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ABSTRACT: Bridges are vital components of any road network which demand crucial and timely decision-making for 
Maintenance, Repair and Rehabilitation (MR&R) activities. Bridge Management Systems (BMSs) as a decision support 
system (DSS), have been developed since the early 1990’s to assist in the management of a large bridge network. 
Historical condition ratings obtained from biennial bridge inspections are major resources for predicting future bridge 
deteriorations via BMSs. Available historical condition ratings in most bridge agencies, however, are very limited, and 
thus posing a major barrier for obtaining reliable future structural performances. To alleviate this problem, the verified 
Backward Prediction Model (BPM) technique has been developed to help generate missing historical condition ratings. 
This is achieved through establishing the correlation between known condition ratings and such non-bridge factors as 
climate and environmental conditions, traffic volumes and population growth. Such correlations can then be used to 
obtain the bridge condition ratings of the missing years. With the help of these generated datasets, the currently available 
bridge deterioration model can be utilized to more reliably forecast future bridge conditions. In this paper, the prediction 
accuracy based on 4 and 9 BPM-generated historical condition ratings as input data are compared, using deterministic 
and stochastic bridge deterioration models. The comparison outcomes indicate that the prediction error decreases as more 
historical condition ratings obtained. This implies that the BPM can be utilised to generate unavailable historical data, 
which is crucial for bridge deterioration models to achieve more accurate prediction results. Nevertheless, there are 
considerable limitations in the existing bridge deterioration models. Thus, further research is essential to improve the 
prediction accuracy of bridge deterioration models. 

Keywords: Feasibility Maintenance, Repair and Rehabilitation (MR&R); Bridge Management System (BMS); Bridge 
condition ratings; Backward Prediction Model (BPM); Non-bridge factors

INTRODUCTION 
It has been widely accepted that critical decision-making 
for Maintenance, Repair and Rehabilitation (MR&R) 
activities is required to ensure optimum levels of safety 
and serviceability of a bridge [1]. Many Bridge 
Management Systems (BMSs), as a Decision Support 
System (DSS), have been developed during the past 
decades to effectively manage a large bridge network. A 
BMS generally assists significant future MR&R 
strategies, which are based on a reliable bridge 
deterioration model. The prediction accuracy of 
deterioration ratings is therefore highly crucial for an 
effective BMS [2]. Many bridge condition ratings and 
deterioration models have been developed to determine 
the bridge life cycle for the major MR&R needs. 

Nevertheless, the predictions of future structural condition 
ratings from BMSs are still impractical for developing long-
term maintenance strategies. This is largely due to several 
drawbacks related to their application in most bridge 
agencies, viz: (1) commercial BMS software has been used 
for two decades and bridge agencies would have only around 
8 to 9 biennial inspection records; (2) bridge condition ratings 
usually do not change much during short-term periods; and 
(3) approximately 60% of BMS analytical process is affected 
by bridge inspection records. These factors mainly lead to 
inaccuracy in predicting the future structural performance of 
bridges. Coupled with these drawbacks is the major weakness 
in current deterioration modelling techniques, which is 
essentially the lack of practical data related to the bridge 
element’s modelling performance. These modelling 
techniques are invariably developed based on a few set of 
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current structural condition ratings, thus unlikely to predict 
reliable future bridge condition ratings [3]. 
Two steps of research have been developed by the authors 
in an attempt to improve long-term predictions of the 
BMS. The first step (currently underway) involves 
generating a robust set of missing historical bridge 
condition ratings, which indicates the trend of structural 
condition depreciations, using the neural network based 
Backward Prediction Model (BPM) based on the sample 
bridge data provided by the Maryland Department of 
Transport (DoT), USA [3]. The BPM has an ability to 
produce missing historical condition ratings through the 
relationship between the real condition ratings and non-
bridge factors. In this respect, well-selected non-bridge 
factors are critical for the BPM to be able to obtain 
reliable correlations. In the second step of the research, a 
reliable deterioration model will be developed based on 
complete historical condition ratings obtained from the 
results of the first step. The future bridge condition 
ratings predicted by this model will then be compared 
with the existing bridge data to determine the level of 
prediction accuracy. This paper presents part of a 
progression in the first step of the abovementioned 
research.  

BACKWARD PREDICTION MODEL  
The BPM predicts the selected or entire periods of 
historical bridge condition rating to overcome the lack of 
existing BMS condition ratings. The mechanism of the 
BPM is shown in Figure 1. It illustrates the main function 
of the Artificial Neural Network (ANN) technique in 
establishing the correlation between the existing 
condition rating datasets (from year m to year m+n) and 
the corresponding years’ non-bridge factors. The non-
bridge factors directly and indirectly affect the variation 
of the bridge conditions thereby the deterioration rate. 
The relationships established using neural networks are 
then applied to the non-bridge factors (for year 0 to year 
m) to generate the missing bridge condition ratings (for 
the same year 0 to year m). Thus, the non-bridge factors, 
in conjunction with the ANN technique, can produce the 
historical trends that help generate the current condition 
ratings [3]. 
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Fig. 1:Mechanism of BPM [3] 

 
The core structure of the ANN-based BPM consists of an 
input layer, hidden layer(s) and an output layer, where 

existing neurons in the hidden and output layers are 
interrelated by weighted relationship. A neuron in the 
hidden layer gains data from the input layer through 
calculation of weighted sum. Afterwards, these data are 
passed on to another neuron in the output layer by using a 
weighted connection [3].  

BPM FOR BMS CONDITION RATINGS  
The results obtained from the BPM were validated by 
using both backward and forward comparison techniques. 
The former compares the BPM outcomes with the known 
historical data to assess the prediction accuracy.; whereas 
the latter uses the BPM outcomes as input data to predict 
present year’s bridge condition ratings, which are then 
compared directly with the actual data in such year. 
To carry out the backward comparison, only 5 sets of 
existing BMS condition ratings were used in this study as 
BPM training inputs and outputs (from 1996 in 2-year 
increment to 2004). As a result, historical condition 
ratings were generated from years 1968 to 1994 in 2-year 
increments. As mentioned in the previous sections, non-
bridge factor affects the reliability of prediction for 
unknown condition ratings. Thus, it was necessary to 
refine non-bridge factors to achieve more reliable BPM 
outcome. This paper employed 6 non-bridge factors, 
which were refined from the original 21 non-bridge 
factors used in the initial BPM development process [3]. 
These refined factors, including passenger vehicle, truck 
and total number of vehicles, highest temperature, local 
city population and state population growth, were deemed 
significant as they demonstrated high-quality trends with 
the existing BMS condition ratings. As a result, historical 
data using each of the 6 non-bridge factors were 
generated. As shown in Figure 2, note that in the figure, 
there are 66 prediction results in each year, being derived 
from the combined number of learning rates (lr: 0.0-0.5) 
and momentum coefficient (mc: 0.0-1.0) in the neural 
network. The details of raw data for BMS inputs are 
shown in Table 1. 
 

Table 1. Raw data of actual condition ratings  
(Element #234 on Bridge #0301xxxx1) 

 

Year of 
inspection

Total 
Qty.(%)

CS1 
(%) 

CS2 
(%) 

CS3 
(%) 

CS4 
(%)

CS5 
(%)

1996 100 80 14 6 0 0 
1998 100 80 14 6 0 0 
2000 100 80 14 6 0 0 
2002 100 80 19 1 0 0 
2004 100 80 19 1 0 0 

 
The average quantity of each CS (Condition State) on 
element #234 (Reinforced Concrete Pier Cap) between 
1996 and 2004 is about 80%, 16.2% and 3.8% of the total 
element in CS1, CS2 and CS3, respectively. The BPM 
generates historical condition ratings from 1968 to 1994 
in three different proportions of the condition state as 
shown Figure 2. Figure 2(c) shows that historical 
condition ratings in 3.8% of the total elements have 
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historically fluctuated more than the other CSs. In other 
words, MR&R activities on these numbers of elements 
were previously performed. In addition, the format of the 
final results has to be modified to conform to the type of 
element level inspection. The BPM outcomes cannot be 
used directly as BMS inputs. Hence, the BPM results are 
required to go through a simple post-calibration process. 
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(a) About 80% of the total quantity 
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(b) About 16.2% of the total quantity 
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(c) About 3.8% of the total quantity 

Fig. 2: BPM results (Element #234, Bridge #0312xxx1) 
 
To validate the results of the BPM using the forward 
comparison technique, the generated backward-prediction 
results (1968-1994) were used as input datasets in this 
test to generate the condition ratings for the present years 
(1996-2004). The BPM-generated condition ratings were 
then directly compared with the existing condition rating 
datasets. The prediction error was calculated by averaging 
the differences between the BPM-generated condition 

ratings and the actual BMS condition ratings. Table 2 
shows the final results from the BPM and their prediction 
errors. The yearly average prediction errors are less than 
±10% which is acceptable. Therefore, the generated 
historical condition ratings (1966-1994) by the BPM can 
reasonably be used as historical BMS input data. 
 

Table 2. Prediction errors of the proposed BPM using 
forward comparisons (Bridge #0312xxx1) 

 Total 
(%) 

CS1 
(%)

CS2 
(%) 

CS3 
(%) 

CS4 
(%)

CS5 
(%)

1996
A
B
C

100.0
100.0

 

86.0
80.0
6.0

12.0 
14.3 
2.3 

2.0 
5.7 
3.7 

0.0 
0.0 
0.0 

0.0 
0.0 
0.0 

 D 2.4% 

1998
A
B
C

100.0
100.0

 

86.0
80.0
6.0

12.0 
14.3 
2.3 

2.0 
5.7 
3.7 

0.0 
0.0%
0.0 

0.0 
0.0 
0.0 

 D 2.4% 

2000
A
B
C

100.0
100.0

 

86.0
80.0
6.0

12.0 
14.3 
2.3 

2.0 
5.7 
3.7 

0.0 
0.0 
0.0 

0.0 
0.0 

0.0%
 D 2.4% 

2002
A
B
C

100.0
100.0

 

86.0
80.0
6.0

12.0 
19.1 
7.1 

2.0 
0.9 
1.1 

0.0 
0.0 
0.0 

0.0 
0.0 
0.0 

 D 4.7% 

2004
A
B
C

100.0
100.0

 

86.0
80.0
6.0

12.0 
19.1 
7.1 

2.0 
0.9 
1.1 

0.0 
0.0 
0.0 

0.0 
0.0 
0.0 

 D 4.7% 
A-results of forward prediction; B-actual condition 
ratings; C-difference between A and B; and D- average of 
difference 

BRIDGE DETERIORATION MODELS 
Many research studies on bridge deterioration models 
have been carried out to improve the reliability of BMS 
outcome. Nonetheless, it has been emphasized that the 
successful achievement of the analysis using these models 
remains highly dependent on the quality and sufficiency 
of data gathered [4].  
According to Morcous et al. [5], current bridge 
deterioration models can be categorized as deterministic, 
stochastic and artificial intelligence. In this paper, only 
the first two modelling techniques are considered as they 
are most common in many current BMSs. Generally, a 
deterministic model predicts that a bridge will deteriorate 
with regard to a particular algorithm, while a stochastic 
model considers that actual deterioration rate is unknown 
and contains a probability that the bridge will deteriorate 
at a particular rate [6]. 
Among the deterministic models, regression analysis is a 
methodology widely used in many BMSs [4], whereas 
Markovian-based model is considered as the most 
common method among the stochastic techniques [7]. 
Therefore, these two models were used in the current 
study to predict future bridge conditions based on the 
BPM-generated historical data. 
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5. COMPARISON OF MODELS 

As described in Section 3, the BPM outcomes can lead to 
improved prediction accurateness. In this section, the 
evaluation of prediction accuracy obtained from both 
linear and non-linear regression analyses, as well as 
Markovian based model are presented. Generally, the 
determination of a functional form of the equation that 
could fit particular datasets (also referred to as a 
performance curve) is considered as crucial part of 
regression modeling [6]. As for linear regression, this 
function is expressed by a simple linear equation; 
whereas in non-linear regression, this function is 
characterized as a polynomial form of second or more 
orders. In this study, following Jiang and Sinha [8], only a 
third-order polynomial model was used to determine 
long-term deterioration of bridge condition ratings. 
Equation 1 presents a performance curve of bridge 
element using a third-order polynomial. 
 
C(t) = β0 + β1ti+ β2ti

2+ β3ti
3+ αi        (1) 

where,  C(t) = condition rating of a bridge at age t; ti = 
bridge age ; αi = error term; and β0 = recorded condition 
rating of a new bridge. 
 
The predictions from both linear and non-linear 
regressions were carried out using 4 available BMS 
datasets (from 1978 to 1984), as shown in Figure 3.  
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(a) Linear regression: 3.5% average errors 
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(b).Non-linear regression:74.4% average errors 

Fig. 3: Prediction results using 4 sets of historical 
condition ratings (from 1978 to 1984) 

 
The average prediction error of linear regression was 
obtained by averaging the differences between the 
condition ratings of the existing BMS condition ratings 
and the prediction data from 1996 to 2004. Similar 
method was employed to calculate the average prediction 
error of non-linear regression. As a result, the average 
prediction errors of linear regression and non-linear 
regression are 3.5% and 74.4%, respectively. It should, 
however, be noted that the prediction results generated by 
non-linear regression technique show unusual pattern of 
deterioration, as illustrated in Figure 3(b). This might be 
resulted from the very limited number of input data used 
in the prediction. 
As illustrated in Figure 4, the prediction results based on 
9 historical data records generated by the BPM using 6 
non-bridge factors. In Section 3, BPM based historical 
condition ratings were generated as 66 combinations of 
learning rate and momentum coefficient. In order for 
these results to be used in the regression analysis, the 66 
combinations in each of the year 1968 to 1994 were 
averaged to represent individual condition rating records. 
Following this, the existing BMS condition ratings and 
the BPM-based prediction results were compared to 
evaluate the prediction accuracy. Following the similar 
approach mentioned above, the average prediction errors 
between the generated condition ratings and the BMS 
condition ratings were calculated for both linear and non-
linear regression models. This yielded the average 
prediction errors of 1.5% and 4.7%, respectively. 
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(a) Linear regression: 1.5% average prediction errors 

ICCEM•ICCPM2009 May 27-30 JEJU, KOREA

703



 

0

20

40

60

80

100

1976 1984 1992 2000 2008 2016 2024

Time (year)

C
on

di
tio

n 
R

at
in

g 
(%

)

Input average data
Prediction
Existing BMS average data

80% of total quantity

16.2% of total quantity

3.8% of total quantity

 
(b) Non-linear regression:4.7% average prediction errors 
Fig. 4: Prediction results using 9 sets of BPM-generated 

historical data 
As described in Figure 5, the prediction results of the 
Markovian-based model based on 4 historical data 
records generated by the BPM using 6 non-bridge factors. 
Theoretically, the Markovian-based model predicts bridge 
condition ratings using the probabilities of bridge 
conditions transition. These probabilities are 
characterized in a matrix type, namely, the transition 
probability matrix. If the current state of bridge 
conditions or the initial state is known, condition from 
one rating to another can be forecasted throughout 
multiplication of original state vector and the transition 
matrix [8].  
To estimate the transition probabilities, the subsequent 
nonlinear programming objective function was 
formulated [8]: 
 

min∑
=

N

t 1

│A(t) – E(t,P)│       

(2) 
 
subject to  
 0 ≤ p(i) ≤1 i= 1,2,…,U 
where 
 N = 6, the number of years in one age group; 
 U = 6, the number of unknown probabilities; 
 P = a vector of length I equal to [p(1), p(2), …, 
 p(I)]; 
 A(t) = the average of condition ratings at time t, 

estimated by regression function; and 
 E(t,P) = estimated value of condition rating by  

Markov chain at time t.  
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Fig. 5: Prediction results using 4 BPM-generated 

historical data in Markovian-based model 
 
As illustrated in Table 3, it compares the errors of the 
predictions using 4 existing BMS condition ratings and 9 
BPM-based generated condition ratings, for linear 
regression, non-linear regression and Markovian-based 
models. According to the table, it is evident that, for all 
modelling techniques, the prediction errors decrease as 
more input data become available. In the case of linear 
regression, the average error of 3.5% from the prediction 
using 4 BMS condition ratings decreases to 1.5% when 
using 9 generated condition ratings. Similarly for the case 
of non-linear regression, the prediction error decreases 
from 74.4% to 4.7% when the number of input datasets 
increases. As for Markovian-based model, only limited 
data can be used as input data for prediction on that 
account, in this paper, just 4 data are used as input data. 
The average prediction errors of Markovian-based model 
using 4 BMS condition ratings are 7.0%.  
 
Table 3: Comparison of prediction error using 4 and 9 
generated data in BPM 

Prediction  
techniques 

Number of  
input data 

Difference between 
prediction and existing 
BMS condition ratings 

A 3.5% Linear 
regression B 1.5% 

A 74.4% Non-linear 
regression B 4.7% 

A 7.0% Markovian-
based model B NA 
A: 4 generated data used in BPM; B: 9 generated data 

used in BPM 
 
The above findings indicate that the amount of datasets is 
essential for numerical prediction methods to gain 
dependable prediction results. They also suggest that, in 
both deterministic and stochastic models, the historical 
data generated by the BPM technique can contribute to 
the improvement of prediction accuracy. This reinforces 
the applicability of the BPM in generating missing 
historical condition ratings that are capable of providing a 
basis for more reliable predictions of future bridge 
conditions. 
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Notwithstanding the above findings, several limitations of 
the above models are also worth noting. As for the 
deterministic models, these are: (1) the models disregard 
the uncertainty due to the stochastic nature of bridge 
deteriorations [8]; (2) they predict the average condition 
of a bridge structure rather the current and historical 
condition ratings of individual elements; (3) they 
approximate bridge structure deterioration only for the 
case of “no maintenance” strategy because it is difficult to 
estimate the influence from various maintenance 
strategies [9]; (4) they ignore the interaction between the 
different bridge structure elements, for example, between 
the bridge deck and the deck joints [10]; and (5) they are 
difficult to be revised when new condition ratings are 
gained [5]. 
In case of the Markovian-based models, although they 
can address two problems in deterministic models by 
capturing the uncertainty of the deterioration process and 
accounting for the current facility condition in predicting 
the future one, they still suffer from the following 
limitations: (1) Markovian-based models currently 
implemented in advanced BMS use the first-order 
Markovian Decision Process that assumes state 
independence for simplicity [11], which means that the 
future facility condition depends only on the current 
facility condition and not on the facility condition history, 
which is unrealistic [12]; (2) transition probabilities 
assume that the condition of a facility can either stay the 
same or decline, thus avoiding the difficulty of estimating 
transition probabilities for facilities where treatment 
actions are performed [13]; (4) Markovian-based models 
cannot efficiently consider the interactive effects between 
the deterioration mechanisms of different bridge 
components [10]; and (5) transition probabilities require 
updates when new data are obtained as bridges are 
inspected, maintained, or rehabilitated, which is a time-
consuming tack [5]. 
6. DISCUSSION AND CONCLUSION 
The performance of BMSs for optimal MR&R strategy 
relies chiefly on bridge deterioration models, which in 
turn depends on the quality and sufficiency of data 
gathered. The lack of historical bridge condition ratings is 
a major problem encountered by the current deterioration 
modelling to achieve reliable prediction of future bridge 
conditions. To overcome this drawback, the Backward 
Prediction Model (BPM) is introduced in this paper as 
a means to assist in generating unavailable historical 
condition data, which was achieved by correlating 
existing bridge condition dataset with non-bridge factors. 
By using 6 refined non-bridge factors, including 
passenger vehicle, truck and total number of vehicles, 
highest temperature, local city population and state 
population growth, 14 historical condition rating records 
(from 1968 to 1994) were generated and applied to the 
bridge deterioration models to predict future bridge 
conditions. To ensure that the quality of such generated 
data was sufficient, future prediction results using the 
generated data was compared with those 5 existing BMS 
condition ratings. Under both linear and non-linear 
regression deterioration modelling scenarios, the average 

errors of the prediction results using 9 BPM-generated 
historical condition records were less than those using 4 
BPM-generated records. This indicated that the prediction 
errors became smaller as the amount of input data 
increases. Hence, using BPM to generate more historical 
condition data could contribute to improved prediction of 
future bridge conditions.  
These findings, however, should be interpreted in light 
of the following main limitations of the deterministic 
deterioration models employed in this paper: (1) their 
prediction is based only on an average condition of 
a bridge structure with no regard to the variability of 
condition rating distributions in each year; and (2) th
ey disregard the interaction between the different brid
ge structure elements. As for the Markovian-based 
model, prediction using 4 BPM-generated historical 
condition records is compatible with prediction of 
regression deterioration model using 9 BPM-generated 
records. However, prediction of Markovian-based model 
only depends on the current facility condition without 
facility condition history, which means unrealistic. 
Moreover, Markovian-based model cannot consider the 
proportion of each condition states in prediction. This 
means that it can ignore critical risk of bridge structure. 
Thus, further research is essential to deal with such li
mitations and should aim to improve a more robust 
deterioration model that fully makes use of the benefits of 
the BPM-generated historical condition records. 
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