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Abstract 
 

Among the various error sources in positioning and navigation, the paper focuses on the modeling and 
prediction of receiver clock bias and then tries to achieve positioning based on simulated and predicted clock bias. 
With the SA off, it is possible to model receiver clock bias more accurately. We selected several types of GNSS 
receivers for test using ARMA model. To facilitate prediction with short and limited sample pseudorange 
observations, AR and ARMA are compared, and the improved AR model is presented to model and predict receiver 
clock bias based on previous solutions. Our work extends to clock bias prediction and positioning based on predicted 
clock bias using only 3 satellites that is usually the case under urban canyon situation. In contrast to previous 
experiences, we find that a receiver clock bias can be well modeled using adopted ARMA model. Test has been done 
on various types of GNSS receivers to show the validation of developed model. 

To further develop this work, we compare solution conditions in terms of DOP values when point positioning is 
conducted using 3 satellites to simulate urban positioning environment. When condition allows, height component is 
derived from other ways and can be set as known values. Given this condition, location is possible using less than 2 
GNSS satellites with fixed height. Solution condition is also discussed for this background using mode of 
constrained positioning. We finally suggest an effective predictive time span based on our test exploration under 
varied conditions. 
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1. Introduction 
 

With the advent of Galileo and other satellite navigation syste
ms, we will share services provided by multiple satellite navigati
on systems in the near future. So far, people are seeking for a sea
mless system function from positioning and navigation system. It
is well known that the limited availability and visibility is caused
 by terrain features and skyscrapers under urban conditions. So it
 is still a challenging issue to achieve positioning under this 
blind area even if satellite source will be enough abounding
Current strategies to deal with limited GNSS visibility includes 
map matching(MM) that needs digital map to be used with  
GNSS unit and it must be updated timely to ensure  i t s  
utilization. 

For over years, People have also tried GNSS and INS 
integration, which has been proved to be somewhat costly  
for high level accuracy purpose and its size is not acceptab
le for most users. Digital odometer, barometer and other   
low cost devices are applied to tackle the problem; different
 algorithms such as Kalman filtering and etc. are also     
created to accommodate location under urban situations.   
Adjustment and calibration for these units often give rise to
 some problems in practical applications. 

It will no doubt benefit our application purpose if further
 potential in positioning model can be explored to exert its
 usage, such kinds of efforts have been tried before to assi
st navigation in difficult situation, especially in urban condit
ion[1,2]. Clock bias has been addressed by many discussion
s[7] and its solution is eaplained in positioning model[5]. In
 this contribution, we explored a method to further use the

 role of GNSS receiver clock bias to assist our navigation 
positioning. We firstly arrive at reasonable clock bias soluti
on from navigation calculation in which ways to deal with 
clock bias estimation and height determination is discussed.  

Secondly feasibility for receiver clock bias simulation by 
ARMA models is explored in which two modified aspects 
 relating ARMA models are addressed. Based on this point,
 further effort to predict clock bias using AR model is exp
ended and positioning results based on prediction are exemp
lified. 
 

2. Brief on ARMA models 
 

A time series obtained from deformation observation can also 
be viewed as a stochastic process through some pre-
processing. We assume that it satisfies ergodicity and can be mod
eled using related approach from theory of time and system. It is 
already well known that a steady time series （t=1,…，N）

can be represented by ARMA (Auto Regressive and Moving Ave
rage) model as[3] 
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（1） 
Where p  and are positive integers for model ARMA 

(p,q), indicating the order for auto regressive and moving 
averaging respectively. 

q

pϕϕϕ ,...,, 21 are auto regressive 

coefficients and qθθθ ,...,, 21 are moving averaging 
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coefficients. tα is Gauss noise sequence. 
With introduction of rearward shift operator 
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We have three choices among models AR, MA and ARMA to 

facilitate specific application. Basically auto correlation function 
for every model can be employed to distinguish MA and other 
two, while partial correlation function can be used to select from 
AR and ARMA. Among them, AR model is expressed as 
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It is denoted as AR(p,0), where P is the order of AR model and 

can be determined from partial correlation function values using 
least variance estimation between actual series and estimated AR 
series. Coefficients for AR(p,0) is estimated from auto 
correlation function values using Yule-Walker equation. 

In case of MA model, it is simplified as： 

t
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               tt aBx )(θ=            （5） 

It is denoted as MA(0,q), where q is the order of MA model. 
For AR model, we have explicit linear solution. When its order 

is determined through model identification, Yule-Walker 
equation by Box-Jenkins gives its solution as(Gareth 
Janacek,1993):  
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Where kρ  represents autocorrelation values of 

observation series , solution stability for above expression is 
guaranteed by positive definition of autocorrelation matrix. 
Solution quality is indicated by model variance that is calculated 
by ： 
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Where 0γ̂ is autocorrelation value with zero delay. It is clear 
that equation solution is determined by a matrix that is composed 
of autocorrelation values kρ . 
 
3. Receiver Clock and Its Modeling 

3.1 Receiver Clock Solution 
 
In normal application, receiver clock bias in navigation 

positioning is calculated with position solution. With signals 
from k GPS satellites for instance, observation equation and 
solution can be expressed respectively as: 
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 Where l, m and n are direction numbers from observer point to 
tracked satellite. iΡ indicates receiver position vector This 
equation can be symbolized in matrix form as: 

               0=+ LXAδ               (8) 
Least square solution is obtained as: 

                    (9) PLAPAAX TT 1)( −−=δ
Positioning performance is usually given by DOP values, 

which is derived from normal equation formed from above 
observation   
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We have PDOP= )( ZZYYXX qqq ++  and TDOP= 

ttq , through transform into local level coordinate system, we 

can have DOP values regarding plane and height precision index. 
In urban condition, poor DOP usually comes with highly 

correlation of height and clock bias solution. At some situation, 
height information is not important or can be roughly obtained 
from other ways. It can be set as known or a loose constraint in 
location calculation. When DOP value is poor, we can easily see 
that satellite is within a restricted area, even Galileo and other 
satellite systems are added, this will not be improved obviously 
for a restricted urban region because this is caused by urban 
building environment. And more signals within a restricted area 
will result in strong relation between direction vectors, which 
means near ill matrix structure when solution is resolved. 

This effect is reflected by unsteady solution output by 
location calculation when the number of satellite is not ideal, for 
example, 4 or 5 satellites with poor DOP values used for location 
computation.  

Different kinds of GNSS receivers can exhibit different clock 
bias features. Following is a list for some receiver clock bias 
solutions. 

 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. LOCUS single frequency GPS receiver clock bias. 
 
In case of this trend value, it is usually modeled by some 

polynomial firstly and the rest part of clock bias is treated in the 
discussion. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. SR299 clock bias estimate  
 
It is noted that estimate is based on observations with SA on, 

and SA dithering is absorbed into clock normal solution, height 
and plane positioning solutions. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. SR299 clock bias estimate with height constrained 

 
From contrast, we can see the differences of the same clock 

estimatesfor SR299 within this time span. With SA on and height 
constrained solution shown in figure 3, the solution partly 
contains SA dithering imposing on satellite signals,other part of 
SA is contained in plane positioning solutions.  

When satellite geometry is not good, we know that there will 
be more obvious correlation between height and clock bias 
solution, so it will result in a more objective clock bias solution 
if height can be roughly obtained or set as known value.  

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4. DOP values for SR299 clock bias estimate 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5. clock biases from 3 satellites and normal estimate  

 
This result shows that clock bias results from 3 satellites with 

height fixed and normal solution from all visible satellites. (We 
used 30 minutes observation), difference may reach as large as 
20 meters although the general trend is almost identical. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. correlation of clock bias and height estimates 
 

It is the usual case that we will have  poor DOP values
 in urban canyon positioning, correlation for height and clo
ck bias series is as large as 0.7 by figure 6, so it is worth
while to firstly  assess impact from this correlation from T
DOP and HDOP analysis. If they are strongly correlated to
 each other, we can set height as known values as a test, 
perhaps value with some weight from error knowledge in el
ectronic maps if condition allows. Given this reasonably der
ived clock estimation series, we can go ahead to model clo
ck behavior using ARMA models. 

 
3.2 Receiver Clock Modeling 

 
Formula (6) and (7) gives commonly used Box-Jinkens



 solution for a random series. Depending on nature of serie
s residuals, BJ solution is not ensured with the most optim
al and unbiased estimate although the method is simple and
 has less computation. Its accuracy can not match with foll
owing Least Square method stated below. 

LS method ensures an unbiased estimation of model pa
rameters with higher accuracy, but computation speed is rel
atively slow, however, LS based on autocorrelation efficient
s is more reasonable in terms of reliable normal equation 
(no ill-conditioned equation) and direct use of information d
erived from series.  

We can see from expressions when the determined order 
is p, the number of used autocorrelation values for parameter 
estimation is also p. This kind of processing limits use of 
autocorrelation values and random property of sampled 
observations will cause some impact on parameter estimation 
when sample number is relatively small. We may overcome this 
demerit using maximum likelihood estimation if distribution 
function for random error is known. Unfortunately this is not 
possible for most of cases. Here we try to use commonly used 
least square method based on consideration for model residual 
which can be indicated by expression (4) as[9] 
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it is easy to derive parameter LS estimation as： 
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white noise variance estimate for model is： 
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It is also easy to realize from estimate theory that derived 
estimation by (13) is the most optimal and unbiased result when 
model residuals are independent white noises with the same 
distribution. 

 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Contrast of BJ LS estimates 
 
Figure 7 lists differences using LS and BJ model. In practical 

case, this can be selected according to test for different receiver 
types.  

Another improving point is to use AR model as an alternative 
for MA or ARMA even if they are tested as a choice for 
modeling receiver clock bias. It is know that solution for AR 
model has an explicit linear form while non-linear equation is 
involved in parameter estimation for MA and ARMA. When the 
identified order is high, seeking for solutions for MA or ARMA 
becomes inconvenient, this is especially challenging for on line 
and real time application.  

Fortunately we can verify from factorization analysis that any 
ARMA or MA model can be equivalently replaced by an AR 
model with a higher order number. This can be explained by 
introducing Green function G and starting from expression 
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in case of MA， 1)( =Bϕ and 1)( =Bθ  for AR model. 
This expression can be finally modified by division as  
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weighting function and it specifies weight for every term in 
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This means we can use AR model to replace ARMA or MA 
models under some conditions to facilitate our application 
purpose. 
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Figure 8. AR model result for SR299 clock bias 
 

Figure 8 is the result using model AR(17, 0) for SR 299 GPS 
receiver. Standard variance deviation calculated is 1.20. Slightly 
increased order may reduce variance, but the speed is very slow. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 9. Comparison of AR with MA and ARMA results 

 
MR(0,2) and ARMA(7,2) are used as test for comparison of 

model selection in contrast to AR with higher order. They show 
the alternative AR model can approach simulation result as by 
MA or ARMA. Order selection can be adjusted from test of 
residuals till an acceptable deviation level is reached. 
 
 
4. Prediction of Receiver Clock  
 
4.1 Receiver Clock Prediction 

 
Prediction for deformation trend is another important aspect 

in deformation simulation and monitoring. From ARMA model 
employed in this research, we see that current observation can be 
expressed by a certain number of previous observations through 
established system. We can also predict the next one or two 
observational trend(s) based on discussed model and limited 
number of observations. It is essential to achieve prediction 
using a small number of observations for on line or real time 
monitoring. 

The best prediction based on (16) can be exhibited by: 
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The prediction error or residual is: 
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The prediction can be proved to be the most optimal 
and unbiased estimate if the serial is normal distributed. 
The variance for prediction is: 
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Prediction efficiency is verified by residual test and model is 

adjusted until residual is a white noise. Figure 10 gives a 
practical prediction by one step. 

 
 
 
 

 

 

 

 

 

 

 

 

 
Figure 10. One step prediction using AR model. 

. 
Clock bias prediction based on short time span clock behavior 

is useful for practical navigation. We use 30m time span clock 
bias that is got from normal solution with height fixed. For 
multi-step prediction, effective forward prediction span can be 
determined by residual test based on suggested AR model.  

 
 
4.2 Positioning Based on Clock Prediction 
 

To simulate navigation positioning under urban canyon 
condition, predicted clock bias is employed to bridge positioning 
gap in case of satellite source scarcity.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11. Positioning differences based on predicted clock bias 



  Figure 11 shows differences of positioning results for N and E 
components from predicted clock bias with normal solution. This 
is result of one step prediction, test has shown that positioning 
based on multi-step prediction is possible, however, effective 
prediction depends on sample rate and number of known clock 
bias values used for forward calculation. The interval can be 
controlled by prediction variance and positioning root mean 
squares test.  
 
 
5. Conclusion and Summary 
 

The paper focuses on positioning method on urban canyon 
condition supported by predicted receiver clock bias. The 
suggested use of modified ARMA models in which the modified 
aspects includes LS based AR parameter estimation and 
replacement of MA and ARMA using equivalent AR model. 
Analysis using practical observation data shows that the 
suggested plan can work well based on well processed clock bias. 

Future plan include issues how to further relate this work with 
urban navigation application.  
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