• Title/Summary/Keyword: Condenser lens

Search Result 27, Processing Time 0.033 seconds

Development of Intelligent Remote Beam Control Function in E-Beam Manufacturing System (전자빔 가공기의 지능형 원격 빔 조절 기능의 개발)

  • Lim Sun-Jong;Lyou Joon
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.2
    • /
    • pp.24-29
    • /
    • 2006
  • The use electron-beam(E-beam) manufacturing system provides a means to alleviate optic exposure equipment's problems. We are developing an E-beam manufacturing system with scanning electron microscope(SEM) function. The E-beam manufacturing system consist of high voltage generator, beam blanker, condenser lenses, object lenses, stigmator and stage. The development of E-beam manufacturing system is used on the method of remaking SEM's structure. The functions of SEM are developed. It is important for the test of E-beam performance. In E-beam manufacturing system and SEM, beam focus is important function. In this paper, we propose intelligent remote control function for beam focus in E-beam manufacturing system. The function extends the user's function and gives convenience.

A Study on Design and Analysis for Magnetic Lenses of a Scanning Electron Microscope using Finite Element Method (유한요소법을 사용한 주사전자 현미경의 전자렌즈 설계 및 해석에 관한 연구)

  • Park, Keun;Jung, Hyun-Woo;Park, Man-Jin;Kim, Dong-Hwan;Jang, Dong-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.9
    • /
    • pp.95-102
    • /
    • 2007
  • The scanning electron microscope (SEM) is one of the most popular instruments available for the measurement and analysis of the micro/nano structures. It is equipped with an electron optical system that consists of an electron beam source, magnetic lenses, apertures, deflection coils, and a detector. The magnetic lenses playa role in refracting electron beams to obtain a focused spot using the magnetic field driven by an electric current from a coil. A SEM column usually contains two condenser lenses and an objective lens. The condenser lenses generate a magnetic field that forces the electron beams to form crossovers at desired locations. The objective lens then focuses the electron beams on the specimen. The present work concerns finite element analysis for the electron magnetic lenses so as to analyze their magnetic characteristics. To improve the performance of the magnetic lenses, the effect of the excitation current and pole-piece design on the amount of resulting magnetic fields and their peak locations are analyzed through the finite element analysis.

Non-imaging Optical Design of a Measurement Probe for LCD Display Used in a Color Analyzer (LCD 디스플레이용 색채계 렌즈에 관한 비결상 광학설계)

  • Rim, Cheon-Seog
    • Korean Journal of Optics and Photonics
    • /
    • v.22 no.5
    • /
    • pp.239-244
    • /
    • 2011
  • We introduce Gaussian (or paraxial) optics that can be successfully applied to design, for use in a color analyzer, a non-imaging optical system on a measurement probe for LCD display. The color analyzer is used to decompose colored lights leaving from some measurement area on the LCD display to red, green, and blue. The color analyzer must include a condenser lens whose purpose is to gather colored lights to illuminate a small area on the sensor. In order to satisfy a reduction ratio between the measurement area and the sensing area with a non-imaging condition, a condenser lens is analytically treated by means of Gaussian optics so that good understanding of the non-imaging condenser lens is achieved as a good design is derived. As a result, the technique shows the necessity of analytical treatment in contrast to the design approach using only commercial software such as CODE-V, Light-Tools, and others. Of course, CODE V and Light-Tools are also utilized in this paper to confirm and complete the Gaussian optical design.

Utilization of Light Microscopy and FFT for MFA Measurement from Unstained Sections of Red Pine (Pinus Densiflora)

  • Kwon, Ohkyung;Lee, Mi-Rim;Eom, Chang-Deuk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.5
    • /
    • pp.399-405
    • /
    • 2013
  • This study demonstrates the utilization of light microscopy and Fast Fourier Transform-Peak Finding (FPF) method for microfibril angle (MFA) measurement from unstained sections of red pine (Pinus densiflora). To obtain an image with optimal contrast and resolution for MFA measurement, effects of numerical aperture (NA) of condenser lens and color filters were investigated. About 60% of NA of the maximum condenser NA produced an image with optimal contrast, but a color filter with short wavelength range (DAPI) created images with improved resolution. Manual angle measurement and the FPF method were applied to the image with optimal contrast for MFA measurement. The experimental results from the FPF method were considered to be more repeatable and less subjective than those from the manual angle measurement.

Design and Analysis of Magnetic Field Control in Electron Lenses for a E-Beam Writer (전자빔 가공기용 자기 렌즈의 자기장 제어구조 설계)

  • 노승국;이찬홍;백영종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.401-404
    • /
    • 2004
  • The electron beam machining provides very high resolution up to nanometer scale, hence the E-beam writing technology is rapidly growing in MEMS and nano-engineering areas. In the optical column of the e-beam writer, there are several lenses condensing and focusing electron beams from electron gun with fringing magnetic fields. To achieve small spot size as 1-2 nm for higher power of electron beam, magnetic lenses should be designed considering their magnetic field distribution. In this paper, the magnetic field at two condenser lenses and object lens are calculated with finite element method and discussed its performances.

  • PDF

Optimal Electron Beam Characteristics by Lenses Analysis Using Scanning Electron Microscopy (주사전자현미경 렌즈의 해석을 통한 최적의 빔 특성 연구)

  • Bae, Jinho;Kim, Dong Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.1
    • /
    • pp.1-9
    • /
    • 2015
  • This paper presents a design method for optimizing the focused beam characteristics, which are mainly determined by the condenser lenses in a scanning electron microscopy (SEM) design. Sharply reducing the probe diameter of electron beams by focusing the condenser lens (i.e., the rate of condensation) is important because a small probe diameter results in high-performance demagnification. This study explored design parameters that contribute to increasing the SEM resolution efficiently using lens analysis and the ray tracing method. A sensitivity analysis was conducted based on those results to compare the effects of these parameters on beam focusing. The results of this analysis on the design parameters for the beam characteristics can be employed as basic key information for designing a column in SEM.

Development of an In-process Confocal Positioning System for Nanostereolithography Using Evanescent Light

  • Kajihara, Yusuke;Takeuchi, Toru;Takahashi, Satoru;Takamasu, Kiyoshi
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.3
    • /
    • pp.51-54
    • /
    • 2008
  • A novel stereolithography method using evanescent light has been proposed as a means to realize 100-nanometer resolution. An in-process measurement system with high accuracy has been introduced to the nanostereolithography apparatus. Specifically, an optical microscopic system was developed to monitor the exposure process and a confocal positioning system was established to improve the longitudinal positioning accuracy in the layer-by-layer process. A high-power objective lens, a tube lens, and a charge coupled device (CCD) were included in the optical microscopic system, whereas a laser, a high-power objective lens, a piezoelectric (PZT) stage, a condenser lens, a pinhole, and a photomultiplier (PMT) made up the confocal microscopic system. Two verification experiments were conducted, and the results indicated that the optical microscopic system had a horizontal resolution of 200 nm and that the confocal positioning system provided a depth resolution of 30.8 nm. These results indicate that nanostereolithography can be successfully performed with this system.

Analysis of the Square Beam Energy Efficiency of a Homogenizer Near the Target for Laser Shock Peening

  • Kim, Taeshin;Hwang, Seungjin;Hong, Kyung Hee;Yu, Tae Jun
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.407-412
    • /
    • 2016
  • We analyzed through numerical simulations the properties of a square beam homogenizer near the target for laser shock peening. The efficiency was calculated near the target by considering the plasma threshold of the metals. We defined the depth of focus of the square beam homogenizer with a given efficiency near the target. Then, we found the relationship between the depth of focus for the laser shock peening and four main parameters of the square beam homogenizer: the plasma threshold of the metal, the number of lenslets in the array-lens, the focal length of the condenser lens and the input beam size.

Alignment Method of Ion Beam Axis in Focused Ion Beam System (집속이온빔장치에서의 이온빔축 얼라인먼트)

  • Park, Cheol-Woo;Lee, Jong-Hang;Kang, Seung-Oun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.9 s.252
    • /
    • pp.1166-1172
    • /
    • 2006
  • This paper describes an alignment method of the ion column which is used for a focused-ion-beam machining system. The alignment parameters for mechanical and electrical components are introduced, and also sample images are used for evaluating the experiments. The experimental results show that geometrical positions of mechanical components have an influence on the quality of emitted ion beam. In addition, we can successfully align the traveling axis of ions by using mechanical and electrical methods.