• Title/Summary/Keyword: Concrete temperature

Search Result 2,484, Processing Time 0.023 seconds

A Study on the Effect of Applying Water Seepage Lowering Method Using Swelling Waterstop for Expansion Joint in the Concrete Dam (콘크리트 댐에서 수축이음부의 수팽창성 차수재를 이용한 침투저감 공법 적용효과 연구)

  • Han, Kiseung;Lee, Seungho;Kim, Sanghoon;Kim, Sejin;Pai, Sungjin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.10
    • /
    • pp.21-29
    • /
    • 2021
  • Most concrete gravity-type dams in and out of the country were constructed by column method to control cracks caused by concrete hydration heat generated during construction, resulting in a certain level of leakage after impoundment through various causes, such as contraction joints and construction joints. However, due to the characteristics of concrete structures that shrink and expand according to temperature, concrete dams have vertical joints and drains to allow penetration. PVC waterproof shows excellent effects in completion of the dam, which however increases the possibility of interfacial failure due to different thermal expansion. Other causes of penetration may include problems with quality control during installation, generation of cracks due to heat of hydration of concrete, waterproofing methods, etc. In the case of Bohyunsan Dam in Yeongcheon, North Gyeongsang Province, the amount of drainage in the gallery was checked and underwater, and it was confirmed that there are many penetrations from drainage holes connected to vertical joints, and that some of the PVC waterproofs are not fully operated. As a new method to prevent penetration through vertical joints, D.S.I.M. (Dam Sealing Innovation Method) developed by World E&C was applied to Bohyunsan Dam and checked the amount of drainage in the gallery. As a result of first testing three most leaking vertical joints, the drain in the gallery was reduced by 87% on the average and then applied to the remaining 13 locations, which showed a 83% reduction effect based on the total drain in the gallery. Summing up these results, it was found that D.S.I.M. preventing water leakage from the upstream face is a valid construction method to reduce the water see-through and penetration quantity seen in downstream faces of concrete dams. If D.S.I.M. is applied to other concrete dams at domestic and abroad, it is expected that it will be very effective to prevent water leakage through vertical joints that are visible from downstream faces.

A study on performance evaluation of fiber reinforced concrete using PET fiber reinforcement (PET 섬유 보강재를 사용한 섬유 보강 콘크리트의 성능 평가에 관한 연구)

  • Ri-On Oh;Yong-Sun Ryu;Chan-Gi Park;Sung-Ki Park
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.4
    • /
    • pp.261-283
    • /
    • 2023
  • This study aimed to review the performance stability of PET (Polyethylene terephthalate) fiber reinforcing materials among the synthetic fiber types for which the application of performance reinforcing materials to fiber-reinforced concrete is being reviewed by examining short-term and long-term performance changes. To this end, the residual performance was analyzed after exposing the PET fiber to an acid/alkali environment, and the flexural strength and equivalent flexural strength of the PET fiber-reinforced concrete mixture by age were analyzed, and the surface of the PET fiber collected from the concrete specimen was examined using a scanning microscope (SEM). The changes in were analyzed. As a result of the acid/alkali environment exposure test of PET fiber, the strength retention rate was 83.4~96.4% in acidic environment and 42.4~97.9% in alkaline environment. It was confirmed that the strength retention rate of the fiber itself significantly decreased when exposed to high-temperature strong alkali conditions, and the strength retention rate increased in the finished yarn coated with epoxy. In the test results of the flexural strength and equivalent flexural strength of the PET fiber-reinforced concrete mixture, no reduction in flexural strength was found, and the equivalent flexural strength result also did not show any degradation in performance as a fiber reinforcement. Even in the SEM analysis results, no surface damage or cross-sectional change of the PET reinforcing fibers was observed. These results mean that no damage or cross-section reduction of PET reinforcing fibers occurs in cement concrete environments even when fiber-reinforced concrete is exposed to high temperatures in the early stage or depending on age, and the strength of PET fibers decreases in cement concrete environments. The impact is judged to be of no concern. As the flexural strength and equivalent flexural strength according to age were also stably expressed, it could be seen that performance degradation due to hydrolysis, which is a concern due to the use of PET fiber reinforcing materials, did not occur, and it was confirmed that stable residual strength retention characteristics were exhibited.

Assessment of Fire-Damaged Mortar using Color image Analysis (색도 이미지 분석을 이용한 화재 피해 모르타르의 손상 평가)

  • Park, Kwang-Min;Lee, Byung-Do;Yoo, Sung-Hun;Ham, Nam-Hyuk;Roh, Young-Sook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.3
    • /
    • pp.83-91
    • /
    • 2019
  • The purpose of this study is to assess a fire-damaged concrete structure using a digital camera and image processing software. To simulate it, mortar and paste samples of W/C=0.5(general strength) and 0.3(high strength) were put into an electric furnace and simulated from $100^{\circ}C$ to $1000^{\circ}C$. Here, the paste was processed into a powder to measure CIELAB chromaticity, and the samples were taken with a digital camera. The RGB chromaticity was measured by color intensity analyzer software. As a result, the residual compressive strength of W/C=0.5 and 0.3 was 87.2 % and 86.7 % at the heating temperature of $400^{\circ}C$. However there was a sudden decrease in strength at the temperature above $500^{\circ}C$, while the residual compressive strength of W/C=0.5 and 0.3 was 55.2 % and 51.9 % of residual strength. At the temperature $700^{\circ}C$ or higher, W/C=0.5 and W/C=0.3 show 26.3% and 27.8% of residual strength, so that the durability of the structure could not be secured. The results of $L^*a^*b$ color analysis show that $b^*$ increases rapidly after $700^{\circ}C$. It is analyzed that the intensity of yellow becomes strong after $700^{\circ}C$. Further, the RGB analysis found that the histogram kurtosis and frequency of Red and Green increases after $700^{\circ}C$. It is analyzed that number of Red and Green pixels are increased. Therefore, it is deemed possible to estimate the degree of damage by checking the change in yellow($b^*$ or R+G) when analyzing the chromaticity of the fire-damaged concrete structures.

Development of Geopolymer Mortar Based on Fly Ash (플라이애시 기반 지오폴리머 모르타르 개발)

  • Koh, Kyung-Taek;Ryu, Gum-Sung;Lee, Jang-Hwa
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.119-126
    • /
    • 2012
  • Portland cement production-1.5billion tonnes yearly worldwide-contributes substantially to global atmospheric pollution(7% of total of $CO_2$ emissions). Attempts to increase the utilization of fly ash, by-products from thermal power plant to partially replace the cement in concrete are gathering momentum. But most of fly ash is currently dumped in landfills, thus creating a threat to the environment. Many researches on alkali-activated concrete that does not need the presence of cement as a binder have been carried out recently. Instead, the sources of material such as fly ash, that are rich in Silicon(Si) and Aluminium(Al), are activated by alkaline liquids to produce the binder. Hence concrete with no cement is effect reduction of $CO_2$ gas. In this study, we investigated the influence of the compressive strength of mortar on alkaline activator and curing condition in oder to develop cementless fly ash based alkali-activated concrete. In view of the results, we found out that it was possible for us to make alkali-activated mortar with 70MPa at the age of 28days by using alkaline activator manufactured as 1:1 the mass ratio of 9M NaOH and sodium silicate and applying the atmospheric curing after high temperature at $60^{\circ}C$ for 48hours.

  • PDF

Laboratory Evaluation of Polysulfide Epoxy Overlay Material for Bridge Deck (교면포장용 폴리설파이드 에폭시재료의 실내물성 평가)

  • Kim, Jun-Hyung;Suh, Young-Chan
    • International Journal of Highway Engineering
    • /
    • v.13 no.2
    • /
    • pp.159-166
    • /
    • 2011
  • This research was performed to evaluate physical properties of polysulfide epoxy overlay material for bridge deck as part of a review for possibility of domestic application of polymer concrete for bridge deck pavement. In order to evaluate strength characteristics, compressive strength, flexural strength and bond strength were tested, and, for durability characteristics, chloride ion penetration resistance and freeze/thaw resistance were tested along with ultraviolet rays impact evaluation. The tests showed that the results met the criteria suggested by the American Concrete Institute in terms of compressive strength, flexural strength and bond strength. However, in terms of the strengths measured at various test temperatures, it was found that the epoxy material was highly dependent on temperature, and, therefore, this should be considered at the time of domestic application of the epoxy material later. Deflection characteristics was checked through flexural strength test and it was found that bridge deck pavement using the epoxy material was excellent compared to bridge deck pavement using asphalt. Furthermore, the results of chloride ion penetration resistance test and freeze/thaw resistance test were also excellent. In the evaluation of ultraviolet rays impact on epoxy slurry mixture, reduction of strain was noticed with increased strength, but the deflection characteristics after exposure to ultraviolet rays was better than the existing acryl polymer concrete. Therefore, it is concluded from the research that the polysulfide epoxy overlay material has the physical properties that are appropriate to pavement of bridge deck.

Behavior of Continuously Reinforced Concrete Pavement under Moving Vehicle Loads and Effecct of Steel Ratio (이동차량하중에 대한 연속철근콘크리트포장의 거동 및 철근비의 영향)

  • Kim Seong-Min;Cho Byoung-Hooi;Kwon Soon-Min
    • International Journal of Highway Engineering
    • /
    • v.8 no.1 s.27
    • /
    • pp.119-130
    • /
    • 2006
  • The behavior of continuously reinforced concrete pavement (CRCP) and the effect of the steel ratio on the behavior under moving wheel loads were investigated in this study. The CRCP sections having different steel ratios of 0.6, 0.7, and 0.8% were considered to evaluate the load transfer efficiency (LTE) at transverse cracks and to investigate the strains in CRCP when the system is subjected to moving vehicle loads. The LTEs were obtained by conducting the falling weight deflectometer (FWD) tests and the tests were performed at three different times of a day to find the curling effect due to the daily temperature changes in CRCP. The strains in the concrete slab and the bond braker layer of the CRCP system under moving vehicle loads were obtained using the embedded strain gages. The results of this study show that the LTEs at transverse cracks are very high and not affected by the time of testing and the steel ratio. The strains in CRCP under vehicle loads become smaller as the vehicle speed increases or as the wandering distance increases; however, the strains are not clearly affected by the steel ratio.

  • PDF

Analysis of Chloride ion Penetration for In-Situation Harbor Concrete Structures (현장 항만 콘크리트 구조물에 대한 염소이온 침투 해석)

  • Han Sang-Hun
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.751-760
    • /
    • 2005
  • The chloride penetration model, which considers diffusion and sorption, is proposed. The FEM program developed on the basis of the diffusion and sorption model provides the estimation of chloride concentration variation according to cyclic humidity and temperature. The humidity diffusion analysis is carried out, and the chloride ion diffusion and sorption analysis are conducted on the basis of the pre-estimated humidity data in each element. Each element has different variables at different ages and locations in analysis. At early ages, the difference of relative humidity between inner and outer concretes causes the chloride ion penetration by sorption. As the humidity diffusion reduces the difference of relative humidity between inner md outer concretes with age, the effect of sorption on the chloride ion penetration decreases with age. The cyclic humidity increases the effect of sorption on the chloride ion penetration at early ages, and increases the quantity of chloride ion around steel at later ages. Therefore, the in-situ analysis of chloride ion Penetration for harbor concrete structures must be Performed considering the cyclic humidity conditionandthelongtermsorption.

Synthesis and Application of Melamine-Type Superplasticizer at the Different Synthetic Conditions (멜라민계 고유동화제의 다양한 조건에서의 합성 및 응용)

  • Yoon Sung-Won;Shin Kyoung-Ho;Rho Jae-Seong
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.811-818
    • /
    • 2005
  • It is well known that the fluidity and the fluidity loss of fresh concrete are affected by the kind of organic admixtures. Organic admixture can improve the properties of concrete. Sulfonated Naphthalene-Formaldehyde(SNF) Superplasticizer is used representatively, but has a problem in fluidity loss. In this study, we synthesized the Sulfonated Melamine-Formaldehyde(SMF) superplasticizer at the various synthetic conditions and compared the physical properties with SMF superplasticizer. SW superplasticizer is synthesized with four synthetic steps. Step 1 is hydroxymethylation, Step. 2 is Sulfonation, Step. 3 is Polymerization and Step. 4 is Stabilization. Synthesis of SMF superplasticizer depends on pH, temperature and reaction time. In this reaction, we changed the mole ratio of melamine to formaldehyde at 1:3, 1:4, and the amount of acid catalyst at Step. 3. After application of SMF superplasticizer and its mixture with SNF superplasticizer to cement pastes and mortars, we measured the physical properties of them at the different dosages(0.5, 1.0, 1.5 wt%) to cement. All samples including superplasticizer showed higher compressive strengths and slump, smaller pore size and porosity than CEM

Determination of Proper Application Rate of Curing Compound for Cement Concrete Pavement (콘크리트 포장 양생제의 적정살포량 결정 연구)

  • Kim, Jang-Rak;Suh, Young-Chan;Ahn, Sung-Soon
    • International Journal of Highway Engineering
    • /
    • v.7 no.2 s.24
    • /
    • pp.45-55
    • /
    • 2005
  • It is known that the Q/C(Quality Control) in the early age of portland cement concrete(PCC) pavement gives a huge effect on long term pavement performance. Thus, many studies regarding the construction of PCC pavement have focused on how to assure construction quality at the early age stage. Curing is one of the most important factor in Q/C of PCC pavement. Membrane curing that protects the evaporation of moisture by placing an impermeable layer on the slab surface is the most common practice for curing the PCC pavement. In order to improve the membrane curing practice, the rate of curing compound should be optimized. However, the optimum rate of curing compound considering Korean weather and environmental conditions has not been specified in the pavement construction specifications. In this study, a proper application rate was recommended in terms of minimizing evaporation with several full-scale tests where various rates of curing compound have been applied. Four test sites on the expressway were enlisted during the summer of 2002 and 2003. Application rates tested were in the range of $0. The rate of evaporation, the temperature pattern of the slab and the pulse velocity of concrete surface have been monitored at each test construction. The result from this study showed that the rate of current construction was approximately $160ml/m^2$ and that approximately $400ml/m^2$ of curing application was recommended as the proper rate for minimizing the moisture evaporation.

  • PDF

Study on the Performance Evaluation of Colored Asphalt Hot Mixtures through the Usage of Grain-typed Color Additive (알갱이 형태의 유색첨가제를 이용한 칼라 아스팔트 혼합물의 공용성 평가 연구)

  • Lee, Sang-Yum;Ahn, Yong-Ju;Mun, Sung-Ho;Kim, Yeong-Min
    • International Journal of Highway Engineering
    • /
    • v.13 no.4
    • /
    • pp.117-122
    • /
    • 2011
  • Asphalt concrete pavement can be widely seen on urban streets, highways, parking lots, and bike trails. Asphalt concrete pavement is relatively temperature sensitive materials due to the viscoelastic behavior, which can be defined as flexible performance in summer and rigid performance in winter. In terms of maintenance, it can be fixed quite easily if damaged. In addition, asphalt concrete pavement is generally found to be black and grey in color. However, several colors can be adopted to change the appearance of plain old boring, black and grey. Generally, there are two types of color systems in hot mix asphalt concrete materials. One system uses colored cementitious material that is applied to pavement surface through coating the surface of the asphalt pavement. The major disadvantage to this system requires a careful skill set to be used on the construction site in order to prevent taking off the cementitious material. The other coloring system colors the asphalt hot mixtures through using color additives. The main advantage to this system is that the asphalt pavement layer is colored using the same techniques that are already used in paving. The disadvantage is that the colors are limited to mainly reds and browns. In this study, a suggested color additive was evaluated, based on rutting, moisture sensitivity, and fatigue cracking performance.