• Title/Summary/Keyword: Concrete Work

Search Result 1,551, Processing Time 0.026 seconds

A Study on the Productivity of Form Work by using Work Analysis Method (작업측정기법을 이용한 거푸집 공사의 생산성에 관한 연구)

  • Jung, Hea-kyang;Yun, Yer-Wan;Yang, Keek-young
    • Journal of the Korea Institute of Building Construction
    • /
    • v.5 no.4 s.18
    • /
    • pp.131-137
    • /
    • 2005
  • Lately Construction industry has been depressing by hard construction market circumstance. Construction company, especial at this time, makes more rationalize the management of inside Company and Construction field. In this study we are to present the method of calculation reasonable duration at Reinforced Concrete Work. For the study first make up a question at field workers, then sampling the Form workers based the question. Second, We are using Work Analysis Method analysing the worker's work-method and Time. And then using the result of analysis, measure the Productivity of Form work. The productivity of Form work is used the basic data of duration at Reinforced Concrete Work

RC deep beams with unconventional geometries: Experimental and numerical analyses

  • Vieira, Agno Alves;Melo, Guilherme Sales S.A.;Miranda, Antonio C.O.
    • Computers and Concrete
    • /
    • v.26 no.4
    • /
    • pp.351-365
    • /
    • 2020
  • This work presents numerical and experimental analyses of the behavior of reinforced-concrete deep beams with unconventional geometries. The main goal here is to experimentally and numerically study these geometries to find possible new behaviors due to the material nonlinearity of reinforced concrete with complex geometries. Usually, unconventional geometries result from innovative designs; in general, studies of reinforced concrete structures are performed only on conventional members such as beams, columns, and labs. To achieve the goal, four reinforced-concrete deep beams with geometries not addressed in the literature were tested. The models were numerically analyzed with the Adaptive Micro Truss Model (AMTM), which is the proposed method, to address new geometries. This work also studied the main parameters of the constitutive model of concrete based on a statistical analysis of the finite element (FE) results. To estimate the ultimate loads, FE simulations were performed using the Monte Carlo method. Based on the obtained ultimate loads, a probabilistic distribution was created, and the final ultimate loads were computed.

An Experimental Study on the Early Frost Resistance Properties of High-Strength Concrete in Winter Concreting (동절기 고강도콘크리트의 시공에 있어서 초기동해 방지에 관한 실험적 연구)

  • 권영진
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2001.11a
    • /
    • pp.76-81
    • /
    • 2001
  • Recently, the structure is higher and larger, so that the application of high-strength concrete is increased, And as the development of construction skills, it is possible to place during the winter. Concrete work during winter is indispensible to shorten time of completion and cut costs. When concrete work during winter is placed, it has anxiety that concrete freeze at low temperature. As repetition of concrete's freezing cause reduction of durability, it is necessary for mixing to pay attention to air content and W/C ratios. Accordingly, in this study, we estimate the frost resistance by air content and W/C ratios, and development of strength after early-frost damage in the high-strength concrete during the cold weather. In this study, it could be confirmed that factors which were air content, W/C ratios and early curing period, affected on the frost resistance.

  • PDF

Properties of concrete incorporating granulated blast furnace slag as fine aggregate

  • Patra, Rakesh Kumar;Mukharjee, Bibhuti Bhusan
    • Advances in concrete construction
    • /
    • v.5 no.5
    • /
    • pp.437-450
    • /
    • 2017
  • The present work investigates about the development of a novel construction material by utilizing Granulated Blast Furnace Slag (GBS), an industrial waste product, as substitution of natural fine aggregates. For this, experimental work has been carried out to determine the influence of GBS on the properties of concrete such as compressive strength (CS), modulus of elasticity, ultrasonic pulse velocity (UPV), chloride penetration, water absorption (WA) volume of voids (VV) and density. Concrete mixes of water/cement (w/c) ratios 0.45 and 0.5, and incorporating 20%, 40% and 60% of GBS as partial replacement of natural fine aggregate (sand) are designed for this study. The results of the experimental investigation depict that CS of concrete mixes increases with the increasing percentages of GBS. Moreover, the decrease in chloride penetration, WA and VV, and improvement in the modulus of elasticity, UPV, density of concrete is reported with the increasing percentage of GBS in concrete.

Mix Design of Polymer Grouting Mortar for Prepacked Concrete Using Polymer Dispersions (폴리머 디스퍼션을 이용한 프리팩트 콘크리트용 주입 모르타르의 배합에 관한 연구)

  • Jo, Young-Kug;Kim, Wan-Ki
    • Journal of the Korea Institute of Building Construction
    • /
    • v.8 no.5
    • /
    • pp.85-91
    • /
    • 2008
  • Prepacked concrete has recently been used in the special constructions fields such as underwater concrete work, heavy-weight concrete work, underground structure work, partial repair works for damaged reinforced concrete structures. and polymer-modified mortars have been employed as grouting mortars for the prepacked concrete. The purpose of this study is to recommend the optimum mix design of polymer-modified grouting mortars for prepacked concrete. Polymer-modified mortars using SBR and EVA emulsions as admixture of grouting mortars for prepacked concrete are prepared with various mix proportions such as sand-binder ratio, fly ash replacement ratio, polymer-binder ratio. and tested for flowability, viscosity of grouting mortars, bleeding ratio, expansion ratio, flexural and compressive strengths of grouting mortars and compressive and tensile strengths of prepacked concretes. From the test results, it is apparent that polymer-modified mortars can be produced as grouting mortars when proper mix design is chosen. We can design the mix proportions of high strength mortars for prepacked concrete according to the control of mix design factors such as type of polymer, polymer-binder ratio, sand-binder ratio and fly ash replacement ratio. Water-binder ratio of plain mortars for a constant flowability value are in the ranges of 43% to 50%. SBR-modified mortar has a little water-binder ratios compared to those of plain mortar, however, EVA-modified mortar needs a high water-binder ratio due to a high viscosity of polymer dispersion. The expansion and bleeding ratios of grouting mortars are also controlled in the proper value ranges. Polymer-modified grouting mortars have good flexural. compressive and tensile strengths, are not affected with various properties with increasing fly ash replacement to cement and binder-sand ratio. In this study, SBR-modified grouting mortar with a polymer-binder ratio of 10% or less, a fly ash replacement of 10% to cement and a sand-binder ratio of 1.5 is recommended as a grouting mortar for prepacked concrete.

A Study on the Measure of Productivity of Form Work (거푸집 공사의 생산성 측정에 관한 연구)

  • Jung Hea-kyang;Yun Yer-Wan;Yang Keek-young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.11a
    • /
    • pp.149-155
    • /
    • 2005
  • Lately Construction industry depressed by hard construction market condition. So Construction company, especial at this time, make more rationalize the management of inside Company and Construction field. So in this study we are to present the method of calculation reasonable duration at Reinforced Concrete Work. For the study first make up a question at field workers, then sampling the Form workers based the question. Second, We are using Work Analysis Method analysing the worker's work-method and Time. And then using the result of analysis, measure the Productivity of Form work. The productivity of Form work is used the basic data of duration at Reinforced Concrete Work

  • PDF

Theoretical Stiffness of Cracked Reinforced Concrete Elements (철근콘크리트 부재의 균열 후 강성 이론)

  • 김장훈
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.5
    • /
    • pp.79-88
    • /
    • 1999
  • The purpose of this paper is to develop a mathematical expression for computing crack angles based on reinforcement volumes in the longitudinal and transverse directions, member end-fixity and length-to-width aspect ratio. For this a reinforced concrete beam-column element is assumed to possess a series of potential crack planes represented by a number of differential truss elements. Depending on the boundary condition, a constant angle truss or a variable angle truss is employed to model the cracked structural concrete member. The truss models are then analyzed using the virtual work method of analysis to relate forces and deformations. Rigorous and simplified solution schemes are presented. An equation to estimate the theoretical crack angle is derived by considering the energy minimization on the virtual work done over both the shear and flexural components the energy minimization on the virtual work done over both the shear and flexural components of truss models. The crack angle in this study is defined as the steepest one among fan-shaped angles measured from the longitudinal axis of the member to the diagonal crack. The theoretical crack angle predictions are validated against experimentally observed crack angle reported by previous researchers in the literature. Good agreement between theory and experiment is obtained.

Effects of loading conditions and cold joint on service life against chloride ingress

  • Yang, Keun-Hyeok;Mun, Ju-Hyun;Yoon, Yong-Sik;Kwon, Seung-Jun
    • Computers and Concrete
    • /
    • v.22 no.3
    • /
    • pp.319-326
    • /
    • 2018
  • RC (Reinforced Concrete) members are always subjected to loading conditions and have construction joints when constructed on a big scale. Service life for RC structure exposed to chloride attack is usually estimated through chloride diffusion test in sound concrete, however the test is performed without consideration of effect of loading and joint. In the present work, chloride diffusion coefficient is measured in concrete cured for 1 year. In order to evaluate the effect of applied load, cold joint, and mineral admixtures, OPC (Ordinary Portland Cement) and 40%-replaced GGBFS (Ground Granulated Blast Furnace Slag) concrete are prepared. The diffusion test is performed under loading conditions for concrete containing cold joint. Investigating the previous test results for 91 days-cured condition and the present work, changing diffusion coefficients with applied stress are normalized considering material type and cold joint. For evaluation of service life in RC continuous beam with 2 spans, non-linear analytical model is adopted, and service life in each location is evaluated considering the effects of applied stress, cold joint, and GGBFS. From the work, varying service life is simulated under various loading conditions, and the reduced results due to cold joint and tensile zone are quantitatively evaluated. The effect of various conditions on diffusion can provide more quantitative evaluation of chloride behavior and the related service life.

Patent Technology Analysis for Derivation of a Concept of Automated Concrete Pouring System (콘크리트 타설 작업 자동화 시스템 개념 도출을 위한 특허 기술 분석)

  • Jeon, Eun-Bi;Kim, Kyoon-Tai
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.175-176
    • /
    • 2020
  • As the concrete pouring work relies on manual work, there is a lot of room for automated equipment development. In this study, as a basic study on the development of an automated system for pouring concrete, the trend of patent applications by year, country and detailed technology was investigated. Related technologies were classified into screed automation, CPB automation, and concrete pouring integrated system to analyze patent application trends. As a result, since 1999, patent applications have been steadily in progress, repeating increases and decreases in Japan, Korea, the United States, and Europe. In addition, the growth stage of the market is in the early stages of maturity, and patent applications for related technologies are expected to continue. In the future, based on the patent application trend analyzed in this study, the development direction of the automated concrete pouring system will be reviewed and the redundancy of similar technologies will be reviewed.

  • PDF

A Comparative Analysis of Operating Ratio for Reinforced Concrete Construction by Occupation classification (철근 콘크리트 공사의 직종별 가동률 비교·분석)

  • Lee, Kang-Hyup;Kim, Min-Jae;Shin, Won-Sang;Son, Chang-Baek
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.200-201
    • /
    • 2014
  • The construction industry in recent years, due to the multi-species engineering specialty, interest and importance of human resource management is growing. But, not many studies on the operation ratio are being proceeded due to the difficulty of casting people on site and actual survey. Thus, this study proposes the work type-specific quantitative operation ratio through work type-specific operation ratio analysis of reinforced concrete construction which takes up an important part of construction work.

  • PDF