DOI QR코드

DOI QR Code

RC deep beams with unconventional geometries: Experimental and numerical analyses

  • Vieira, Agno Alves (Federal Institute of Education, Science and Technology of Goias (IFG), Formosa Campus) ;
  • Melo, Guilherme Sales S.A. (Department of Civil and Environmental Engineering, University of Brasilia) ;
  • Miranda, Antonio C.O. (Department of Civil and Environmental Engineering, University of Brasilia)
  • Received : 2020.03.11
  • Accepted : 2020.10.07
  • Published : 2020.10.25

Abstract

This work presents numerical and experimental analyses of the behavior of reinforced-concrete deep beams with unconventional geometries. The main goal here is to experimentally and numerically study these geometries to find possible new behaviors due to the material nonlinearity of reinforced concrete with complex geometries. Usually, unconventional geometries result from innovative designs; in general, studies of reinforced concrete structures are performed only on conventional members such as beams, columns, and labs. To achieve the goal, four reinforced-concrete deep beams with geometries not addressed in the literature were tested. The models were numerically analyzed with the Adaptive Micro Truss Model (AMTM), which is the proposed method, to address new geometries. This work also studied the main parameters of the constitutive model of concrete based on a statistical analysis of the finite element (FE) results. To estimate the ultimate loads, FE simulations were performed using the Monte Carlo method. Based on the obtained ultimate loads, a probabilistic distribution was created, and the final ultimate loads were computed.

Keywords

References

  1. Bentz, E.C. (2000), "Sectional analysis of reinforced concrete members", University of Toronto.
  2. Campione, G. and Minafo, G (2012), "Behaviour of concrete deep beams with openings and low shear span-to-depth ratio", Eng. Struct., 41, 294-306. https://doi.org/10.1016/j.engstruct.2012.03.055.
  3. Chae, H.S. and Yun, Y.M. (2015), "Strut-tie model for two-span continuous RC deep beams", Comput. Concrete, 16(3), 357-380. https://doi.org/10.12989/cac.2015.16.3.357.
  4. El-Demerdash, W.E., El-Metwally, S.E., El-Zoughiby, M.E. and Ghaleb, A.A. (2015), "Behavior of RC shallow and deep beams with openings via the strut-and-tie model method and nonlinear finite element.", Arab. J. Sci. Eng., 41(2), 401-424. https://doi.org/10.1007/s13369-015-1678-x.
  5. Eun, H.C., Lee, Y.H., Chung, H.S. and Yang, K.H. (2006), "On the shear strength of reinforced concrete deep beam with web opening", Struct. Des. Tall Spec. Build., 15(4), 445-466. https://doi.org/10.1002/tal.306 ON.
  6. Foster, S.J. and Marti, P. (2003), "Cracked membrane model: finite element implementation", J. Struct. Eng., 129(9), 1155-1163. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:9(1155)
  7. Gallardo, J.M., Huaco, G.D., Samaras, V.A. and Breen, J.E. (2014), "Experimental evaluation of strut-and-tie model of indeterminate deep beam", ACI Struct. J., 111(4), 873. https://doi.org/10.14359/51686738.
  8. Guan, H. (2005), "Strut-and-tie model of deep beams with web openings-An optimization approach", Struct. Eng. Mech., 19(4), 361-379. http://dx.doi.org/10.12989/sem.2005.19.4.361.
  9. Hu, O.E., Tan, K.H. and Liu, X.H. (2007), "Behaviour and strut-and-tie predictions of high-strength concrete deep beams with trapezoidal web openings", Mag. Concrete Res., 59(7), 529-541. https://doi.org/10.1680/macr.2007.59.7.529.
  10. Kiousis, P.D., Papadopoulos, P.G. and Xenidis, H. (2010), "Truss modeling of concrete columns in compression", J. Eng. Mech., 136(8), 1006-1014. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000142.
  11. Kong, F.K. (2002), Reinforced Concrete Deep Beams, Taylor & Francis Books, Inc., Taylor & Francis Books, Inc.
  12. Ley, M.T., Riding, K.A., Bae, S. and Breen, J.E. (2007), "Experimental verification of strut-and-tie model design method", ACI Struct. J., 104(6), 749-755.
  13. Lu, W.Y., Yu, H.W., Chen, C.L., Liu, S.L. and Chen, T.C. (2015), "High-strength concrete deep beams with web openings strengthened by carbon fiber reinforced plastics", Comput. Concrete, 15(1), 21-35. http://dx.doi.org/10.12989/cac.2015.15.1.021.
  14. Maekawa, K., Okamura, H. and Pimanmas, A. (2003), Non-linear Mechanics of Reinforced Concrete, CRC Press.
  15. Miranda, A.C., Neto, J.C. and Martha, L.F. (1999), "An algorithm for two-dimensional mesh generation for arbitrary regions with cracks", XII Brazilian Symposium on Computer Graphics and Image Processing, Cat. No. PR00481, 29-38.
  16. de Oliveira Miranda, A.C. and Martha, L.F. (2017), "Hierarchical template-based quadrilateral mesh generation", Eng. Comput., 33(4), 701-715. https://doi.org/10.1007/s00366-014-0392-8.
  17. de Oliveira Miranda, A.C., Meggiolaro, M.A., De Castro, J.T.P. and Martha, L.F. (2003), "Fatigue life prediction of complex 2D components under mixed-mode variable amplitude loading", Int. J. Fatig., 25(9-11), 1157-1167. https://doi.org/10.1016/S0142-1123(03)00118-X.
  18. Miranda, A.C.O., Meggiolaro, M.A., Castro, J.T.P., Martha, L.F. and Bittencourt, T.N. (2003), "Fatigue life and crack path predictions in generic 2D structural components", Eng. Fract. Mech., 70(10), 1259-1279. https://doi.org/10.1016/S0013-7944(02)00099-1.
  19. de Oliveira Miranda, A.C. and Martha, L.F. (2013), "Quadrilateral mesh generation using hierarchical templates", Proceedings of the 21st International Meshing Roundtable, Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33573-0_17.
  20. Mohamed, A.R., Shoukry, M.S. and Saeed, J.M. (2014), "Prediction of the behavior of reinforced concrete deep beams with web openings using the finite element method", Alex. Eng. J., 53(2), 329-339. https://doi.org/10.1016/j.aej.2014.03.001.
  21. Nagarajan, P., Jayadeep, U.B. and Pillai, T.M. (2010), "Application of micro truss and strut and tie model for analysis and design of reinforced concrete structural elements", Sonklanakarin J. Sci. Technol., 31(6), 647.
  22. Nagarajan, P., Jayadeep, U.B. and Pillai, T.M. (2010), "Mesoscopic numerical analysis of reinforced concrete beams using a modified micro truss model", Interact. Multisc. Mech., 3(1), 23-37. https://doi.org/10.12989/imm.2010.3.1.023
  23. Okamura, H. (1985), "Verification of modeling for reinforced concrete finite element", Finite Elem. Anal. Reinf. Concrete Struct., 528-543.
  24. Okamura, H. and Maekawa, K. (1991), "Nonlinear analysis and constitutive nodels of reinforced concrete", Gihodo, Tokyo.
  25. Salem, H.M. and Maekawa, K. (2006), "Computer-aided analysis of reinforced concrete using a refined nonlinear strut and tie model approach", J. Adv. Concrete Technol., 4(2), 325-336. https://doi.org/10.3151/jact.4.325.
  26. Salem, H.M. (2004), "The micro truss model: An innovative rational design approach for reinforced concrete", J. Adv. Concrete Technol., 2(1), 77-87. https://doi.org/10.3151/jact.2.77.
  27. Schlaich, J., Schafer, K. and Jennewein, M. (1987), "Toward a consistent design of structural concrete", PCI J., 32(3), 74-150. https://doi.org/10.15554/pcij.05011987.74.150.
  28. Selby, R.G. and Vecchio, F.J. (1997), "A constitutive model for analysis of reinforced concrete solids", Can. J. Civil Eng., 24(3), 460-470. https://doi.org/10.1139/cjce-24-3-460.
  29. Vecchio, F.J. (1990), "Reinforced concrete membrane element formulations", J. Struct. Eng., 116(3), 730-750. https://doi.org/10.1061/(ASCE)0733-9445(1990)116:3(730)
  30. Vecchio, F.J. (1989), "Nonlinear finite element analysis of reinforced concrete columns", J. Korea Concrete Inst., 16(3), 397-406. https://doi.org/10.4334/JKCI.2004.16.3.397.
  31. Vecchio, F.J. (1992), "Finite element modelling of concrete expansion and confinement", J. Struct. Eng., ASCE, 118(9), 2390-2406. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:9(2390).
  32. Wang, T. and Hsu, T.T. (2001), "Nonlinear finite element analysis of concrete structures using new constitutive models", Comput. Struct., 79(32), 2781-2791. https://doi.org/10.1016/S0045-7949(01)00157-2.
  33. Wu, T. and Li, B. (2009), "Experimental verification of continuous deep beams with openings designed using strut-and-tie modelling", IES J. Part A: Civil Struct. Eng., 2(4), 282-295. https://doi.org/10.1080/19373260903141454.
  34. Yang, K.H. and Ashour, A.F. (2008a), "Effectiveness of web reinforcement arounds openings in continuous concrete deep beams", ACI Struct. J., 105(4), 414-424.
  35. Yang, K.H., Eun, H.C. and Chung, H.S. (2006), "The influence of web openings on the structural behavior of reinforced high-strength concrete deep beams", Eng. Struct., 28(13), 1825-1834. https://doi.org/10.1016/j.engstruct.2006.03.021.
  36. Yavuz, G. (2016), "Shear strength estimation of RC deep beams using the ANN and strut-and-tie approaches", Strut. Eng. Mech., 57(4), 657-680. https://doi.org/10.12989/sem.2016.57.4.657.
  37. Zhong, J., Wang, L., Li, Y. and Zhou, M. (2017), "A practical approach for generating the strut-and-tie models of anchorage zones", J. Bridge Eng., 22(4), 04016134. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001013.