• Title/Summary/Keyword: Concerted mechanism

Search Result 105, Processing Time 0.021 seconds

Origin of the α-Effect in Nucleophilic Substitution Reactions of Y-Substituted Phenyl Benzoates with Butane-2,3-dione Monoximate and Z-Substituted Phenoxides: Ground-State Destabilization vs. Transition-State Stabilization

  • Kim, Mi-Sun;Min, Se-Won;Seo, Jin-A;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.12
    • /
    • pp.2913-2917
    • /
    • 2009
  • Second-order rate constants (k$_{Nu–}$) have been measured for nucleophilic substitution reactions of Y-substituted phenyl benzoates (1a-i) with butane-2,3-dione monoximate ($Ox^-\;an\;\alpha$-nucleophile) and Z-substituted phenoxides in 80 mol% H$_2$O/20 mol% DMSO at 25.0${\pm}$0.1$^{\circ}C$. Hammett plots correlated with ${\sigma}^o$ and ${\sigma}^-$ constants for reactions of 1a-h with Ox$^–$ exhibit many scattered points. In contrast, the Yukawa-Tsuno plot results in a good linear correlation with ${\rho}_Y$ = 2.20 and r = 0.45, indicating that expulsion of the leaving group occurs in the rate-determining step (RDS). A stepwise mechanism with expulsion of the leaving-group being the RDS has been excluded, since Y-substituted phenoxides are less basic and better nucleofuges than Ox$^–$. Thus, the reactions have been concluded to proceed through a concerted mechanism. Ox$^–$ is over 10$^2$ times more reactive than its reference nucleophile, 4-chlorophenoxide (4-ClPhO$^–$). One might suggest that stabilization of the transition-state (TS) through intramolecular general acid/base catalysis is responsible for the ${\alpha}$-effect since such general acid/base catalysis is not possible for the corresponding reactions with 4-ClPhO$^–$. However, destabilization of the ground-state (GS) of Ox$^–$ has been concluded to be mainly responsible for the ${\alpha}$-effect found in this study on the basis of the fact that the magnitude of the ${\alpha}$-effect is independent of the nature of the substituent Y.

Decomposition of Paraoxon and Parathion by Amines, HOO- and OH- Ions: Reaction Mechanism and Origin of the α-Effect

  • Bae, Ae-Ri;Lee, Jieun;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.201-206
    • /
    • 2013
  • The second-order rate constants have been measured spectrophotometrically for the reactions of paraoxon 1 and parathion 2 with a series of alicyclic secondary amines, $OH^-$ and $HOO^-$ ions in $H_2O$ at $25.0{\pm}0.1^{\circ}C$. A linear Br${\o}$nsted-type plot with ${\beta}_{nuc}$ = 0.40 was obtained for the reactions of 1 with amines and $OH^-$. The reaction has been concluded to proceed through a concerted mechanism. $HOO^-$ deviates positively from the linear Br${\o}$nsted-type plot, implying that the ${\alpha}$-effect is operative. The magnitude of the ${\alpha}$-effect ($k_{HOO^-}/k_{OH^-}$) was found to be ca. 55 for the reaction of 1 and 290 for that of parathion 2, indicating that $HOO^-$ is highly effective in decomposition of the toxic phosphorus compounds although it is over 4 $pK_a$ units less basic than $OH^-$. Among the theories suggested as origins of the ${\alpha}$-effect (e.g., TS stabilization through an intramolecular Hbonding interaction, solvent effect, and polarizability effect), polarizability effect appears to be the most important factor for the ${\alpha}$-effect in this study, since the polarizable $HOO^-$ exhibits a larger ${\alpha}$-effect for the reaction of the more polarizable substrate 2.

Structure-Reactivity Correlations in Nucleophilic Displacement Reactions of Y-Substituted-Phenyl X-Substituted-Cinnamates with Z-Substituted-Phenoxides

  • Son, Yu-Jin;Kim, Eun-Hee;Kang, Ji-Sun;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.8
    • /
    • pp.2455-2460
    • /
    • 2013
  • Second-order rate constants ($k_N$) have been measured spectrophotometrically for the nucleophilic displacement reactions of 4-nitrophenyl X-substituted-cinnamates (4a-4e) and Y-substituted-phenyl cinnamates (5a-5e) with Z-substituted-phenoxide anions in 80 mol % $H_2O$/20 mol % DMSO at $25.0{\pm}0.1^{\circ}C$. The Hammett plot for the reactions of 4a-4e with 4-chlorophenoxide (4-$ClPhO^-$) consists of two intersecting straight lines, which might be taken as a change in the rate-determining step (RDS). However, it has been concluded that the nonlinear Hammett plot is not due to a change in the RDS but is caused by stabilization of the ground state of substrates possessing an electron-withdrawing group in the cinnamoyl moiety through resonance interactions, since the Yukawa-Tsuno plot exhibits an excellent linear correlation with ${\rho}X=0.89$ and r = 0.58. The Br${\o}$nsted-type plot for the reactions of 4-nitrophenyl cinnamate (4c) with Z-substituted-phenoxides is linear with ${\beta}_{nuc}=0.76$. The Br${\o}$nsted-type plot for the reactions of Y-substituted-phenyl cinnamates (5a-5d) with 4-chlorophenoxides (4-$ClPhO^-$) is also linear with ${\beta}_{lg}=-0.72$. The Hammett plot correlated with ${\sigma}^-$ constants for the reactions of 5a-5d results in a much better linear correlation than that correlated with ${\sigma}^o$ constants, indicating that a partial negative charge develops on the O atom of the leaving aryloxide. Thus, the reactions have been concluded to proceed through a concerted mechanism.

Kinetics and Mechanism of the Pyridinolysis of Diethyl Isothiocyanophosphate in Acetonitrile

  • Adhikary, Keshab Kumar;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.1042-1046
    • /
    • 2012
  • The kinetics and mechanism of the pyridinolysis ($XC_5H_4N$) of diethyl isothiocyanophosphate are investigated in acetonitrile at $55.0^{\circ}C$. The Hammett and Bronsted plots for substituent X variations in the nucleophiles exhibit the two discrete slopes with a break region between X = 3-Ac and 4-Ac. These are interpreted to indicate a mechanistic change at the break region from a concerted to a stepwise mechanism with rate-limiting expulsion of the isothiocyanate leaving group from a trigonal bipyramidal pentacoordinated intermediate. The relatively large ${\beta}_x$ values with more basic and less basic pyridines imply much greater fraction of frontside nucleophilic attack TSf than that of backside attack TSb.

Kinetics and Mechanism of Anilinolyses of Aryl Methyl and Aryl Propyl Chlorothiophosphates in Acetonitrile

  • Barai, Hasi Rani;Lee, Hai Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.9
    • /
    • pp.2797-2802
    • /
    • 2014
  • Nucleophilic substitution reactions of Y-aryl methyl (8) and Y-aryl propyl (10) chlorothiophosphates with substituted anilines and deuterated anilines are investigated kinetically in acetonitrile at $55.0^{\circ}C$. A concerted mechanism is proposed for 8 based on the negative ${\rho}_{XY}$ (= -0.23) value, while a stepwise mechanism with a rate-limiting leaving group departure from the intermediate is proposed for 10 based on the positive ${\rho}_{XY}$ (= +0.68) value. The deuterium kinetic isotope effects (DKIEs; $k_H/k_D$) are 0.89-1.28 and 0.62-1.20 with 8 and 10, respectively. Primary normal and secondary inverse DKIEs are rationalized by a frontside attack involving hydrogen bonded, four-center-type transition state and backside attack involving in-line-type transition state, respectively.

Kinetics and Mechanism of Anilinolyses of Ethyl Methyl, Ethyl Propyl and Diisopropyl Chlorothiophosphates in Acetonitrile

  • Barai, Hasi Rani;Hoque, Md. Ehtesham Ul;Lee, Hai Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.12
    • /
    • pp.3811-3816
    • /
    • 2013
  • Nucleophilic substitution reactions of ethyl methyl (2), ethyl propyl (4) and diisopropyl (7) chlorothiophosphates with substituted anilines and deuterated anilines are investigated kinetically in acetonitrile at $55.0^{\circ}C$. A concerted mechanism is proposed based on the selectivity parameters. The deuterium kinetic isotope effects (DKIEs; $k_H/k_D$) are secondary inverse ($k_H/k_D=0.66-0.99$) with 2, primary normal and secondary inverse ($k_H/k_D=0.78-1.19$) with 4, and primary normal ($k_H/k_D=1.06-1.21$) with 7. The primary normal and secondary inverse DKIEs are rationalized by frontside attack involving hydrogen bonded, four-center-type transition state, and backside attack involving in-line-type transition state, respectively. The anilinolyses of ten chlorothiophosphates are examined based on the reactivity, steric effect of the two ligands, thio effect, reaction mechanism, DKIE and activation parameter.

Kinetics and Mechanism of the Aminolyses of Bis(2-oxo-3-oxazolidinyl) Phosphinic Chloride in Acetonitrile

  • Barai, Hasi Rani;Lee, Hai Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.11
    • /
    • pp.3218-3222
    • /
    • 2013
  • The aminolyses, anilinolysis and pyridinolysis, of bis(2-oxo-3-oxazolidinyl) phosphinic chloride (1) have been kinetically investigated in acetonitrile at 55.0 and $35.0^{\circ}C$, respectively. For the reactions of 1 with substituted anilines and deuterated anilines, a concerted SN2 mechanism is proposed based on the selectivity parameters and activation parameters. The deuterium kinetic isotope effects ($k_H/k_D$) invariably increase from secondary inverse to primary normal as the aniline becomes more basic, rationalized by the transition state variation from a backside to a frontside attack. For the pyridinolysis of 1, the authors propose a stepwise mechanism with a rate-limiting step change from bond breaking for more basic pyridines to bond formation for less basic pyridines based on the selectivity parameters and activation parameters. Biphasic concave upward free energy relationship with X is ascribed to a change in the attacking direction of the nucleophile from a frontside attack with more basic pyridines to a backside attack with less basic pyridines.

Kinetics and Mechanism of the Pyridinolysis of Dimethyl Isothiocyanophosphate in Acetonitrile

  • Adhikary, Keshab Kumar;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.7
    • /
    • pp.2260-2264
    • /
    • 2012
  • The kinetics and mechanism of the pyridinolysis ($XC_5H_4N$) of dimethyl isothiocyanophosphate are investigated in acetonitrile at $55.0^{\circ}C$. The Hammett and Br$\ddot{o}$nsted plots for substituent X variations in the nucleophiles exhibit two discrete slopes with a break region between X = 3-Ac and 4-Ac. These are interpreted to indicate a mechanistic change at the break region from a concerted to a stepwise mechanism with a rate-limiting expulsion of the isothiocyanate leaving group from the intermediate. The relatively large ${\beta}x$ values imply much greater fraction of frontside nucleophilic attack TSf than that of backside attack TSb. The steric effects of the two ligands play an important role to determine the pyridinolysis rates of isothiocyanophosphates.

Kinetics and Mechanism for aquation of [Co(en)2(CO3)]+ in [H+] aqueous solution (산 수용액내에서 [Co(en)2(CO3)]+의 아쿠아 반응속도와 반응메커니즘)

  • Lee, Chul-Je;Kim, Dong-Yeub
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.8 no.3
    • /
    • pp.155-160
    • /
    • 2005
  • Kinetic studies were carried out for aquation of carbonatobis(ethylenediamine)cobalt(III) complexes in [H+] aqueous solution by UV/VIS-spectrophotometry. The rate law that in deduced from rate data is $rate=k_H{^+}[H^+]^{1.4}$ {$[Co(en)_2(CO_3)]^+$}1.0 where $k_H{^+}$ is the rate constant considering acidic catalyst, $H^+$ ion whose value is $0.241l{\cdot}mol^{-1}{\cdot}sec^{-1}$. The values of activation parameters Ea, ${\Delta}H^{\ast}$ and ${\Delta}S^{\ast}$ were $15.33Kcal{\cdot}mol^{-1}$, $14.52Kcal{\cdot}mol^{-1}$ and -57.49 e.u. respectively. On the basis of kinetic data and the observed activation parameters, we have proposed the mechanism that proceeds with two step protonations. The rate equation derived from the proposed mechanism has been in agreement with the observed rate equation. It has been seen that our modified mechanism for Harris's proton freequilibrium one prefer to the his concerted mechanism, and more the last product substitute $H_2O$ for $OH^-$ the Harris's mechanism in the acidity range 2 < pH < 5.

  • PDF

Mechanism of amyloidogenesis: nucleation-dependent fibrillation versus double-concerted fibrillation

  • Bhak, Ghi-Bom;Choe, Young-Jun;Paik, Seung-R.
    • BMB Reports
    • /
    • v.42 no.9
    • /
    • pp.541-551
    • /
    • 2009
  • Amyloidogenesis defines a condition in which a soluble and innocuous protein turns to insoluble protein aggregates known as amyloid fibrils. This protein suprastructure derived via chemically specific molecular self-assembly process has been commonly observed in various neurodegenerative disorders such as Alzheimer's, Parkinson's, and Prion diseases. Although the major culprit for the cellular degeneration in the diseases remains unsettled, amyloidogenesis is considered to be etiologically involved. Recent recognition of fibrillar polymorphism observed mostly from in vitro amyloidogeneses may indicate that multiple mechanisms for the amyloid fibril formation would be operated. Nucleation-dependent fibrillation is the prevalent model for assessing the self-assembly process. Following thermodynamically unfavorable seed formation, monomeric polypeptides bind to the seeds by exerting structural adjustments to the template, which leads to accelerated amyloid fibril formation. In this review, we propose another in vitro model of amyloidogenesis named double-concerted fibrillation. Here, two consecutive assembly processes of monomers and subsequent oligomeric species are responsible for the amyloid fibril formation of $\alpha$-synuclein, a pathological component of Parkinson's disease, following structural rearrangement within the oligomers which then act as a growing unit for the fibrillation.