Browse > Article
http://dx.doi.org/10.5012/bkcs.2013.34.12.3811

Kinetics and Mechanism of Anilinolyses of Ethyl Methyl, Ethyl Propyl and Diisopropyl Chlorothiophosphates in Acetonitrile  

Barai, Hasi Rani (Department of Chemistry, Inha University)
Hoque, Md. Ehtesham Ul (Department of Chemistry, Govt. Brojomohun College)
Lee, Hai Whang (Department of Chemistry, Inha University)
Publication Information
Abstract
Nucleophilic substitution reactions of ethyl methyl (2), ethyl propyl (4) and diisopropyl (7) chlorothiophosphates with substituted anilines and deuterated anilines are investigated kinetically in acetonitrile at $55.0^{\circ}C$. A concerted mechanism is proposed based on the selectivity parameters. The deuterium kinetic isotope effects (DKIEs; $k_H/k_D$) are secondary inverse ($k_H/k_D=0.66-0.99$) with 2, primary normal and secondary inverse ($k_H/k_D=0.78-1.19$) with 4, and primary normal ($k_H/k_D=1.06-1.21$) with 7. The primary normal and secondary inverse DKIEs are rationalized by frontside attack involving hydrogen bonded, four-center-type transition state, and backside attack involving in-line-type transition state, respectively. The anilinolyses of ten chlorothiophosphates are examined based on the reactivity, steric effect of the two ligands, thio effect, reaction mechanism, DKIE and activation parameter.
Keywords
Thiophophoryl transfer reaction; Anilinolysis; Chlorothiophosphate; Deuterium kinetic isotope effect; Steric effect;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Dey, N. K.; Hoque, M. E. U.; Kim, C. K.; Lee, B. S.; Lee, H. W. J. Phys. Org. Chem. 2008, 21, 544.   DOI   ScienceOn
2 Hoque, M. E. U.; Lee, H. W. Bull. Korean Chem. Soc. 2011, 32, 4403.   DOI   ScienceOn
3 Hoque, M. E. U.; Lee, H. W. Bull. Korean Chem. Soc. 2012, 33, 843.   DOI   ScienceOn
4 Hoque, M. E. U.; Dey, N. K.; Kim, C. K.; Lee, B. S.; Lee, H. W. Org. Biomol. Chem. 2007, 5, 3944.   DOI   ScienceOn
5 Hoque, M. E. U.; Dey, S.; Guha, A. K.; Kim, C. K.; Lee, B. S.; Lee, H. W. J. Org. Chem. 2007, 72, 5493.   DOI   ScienceOn
6 Taft, R. W. Steric Effect in Organic Chemistry, Newman, M. S., Ed.; Wiley: New York, 1956; Chapter 3.
7 Exner, O. Correlation Analysis in Chemistry: Recent Advances; Chapman, N. B., Shorter, J., Eds.; Plenum Press: New York, 1978; p 439.
8 Ritchie, C. D. in Solute-Solvent Interactions, Coetzee, J. F., Ritchie, C. D., ed.; Marcel Dekker: New York, 1969; Chapter 4.
9 Coetzee, J. F. Prog. Phys. Org. Chem. 1967, 4, 45.
10 Spillane, W. J.; Hogan, G.; McGrath, P.; King, J.; Brack, C. J. Chem. Soc., Perkin Trans. 2 1996, 2099.
11 Oh, H. K.; Woo, S. Y.; Shin, C. H.; Park, Y. S.; Lee, I. J. Org. Chem. 1997, 62, 5780.   DOI   ScienceOn
12 Perrin, C. I.; Engler, R. E. J. Phys. Chem. 1991, 95, 8431.   DOI
13 Perrin, C. I.; Ohta, B. K.; Kuperman, J. J. Am. Chem. Soc. 2003, 125, 15008.   DOI   ScienceOn
14 Perrin, C. I.; Ohta, B. K.; Kuperman, J.; Liberman, J.; Erdelyi, M. J. Am. Chem. Soc. 2005, 127, 9641.   DOI   ScienceOn
15 Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991, 91, 165.   DOI
16 Streitwieser, A., Jr.; Heathcock, C. H.; Kosower, E. M. Introduction to Organic Chemistry, 4th ed.; Macmillan: New York, 1992; p 735.
17 Crumpler, T. B.; Yoh, J. H. Chemical Computations and Errors; John Wiley: New York, 1940; p 178.
18 Lee, I. Chem. Soc. Rev. 1990, 19, 317.   DOI
19 Lee, I. Adv. Phys. Org. Chem. 1992, 27, 57.
20 Lee, I.; Lee, H. W. Collect. Czech. Chem. Commun. 1999, 64, 1529.   DOI   ScienceOn
21 Guha, A. K.; Lee, H. W.; Lee, I. J. Chem. Soc., Perkin Trans. 2 1999, 765.
22 Hoque, M. E. U.; Lee, H. W. Bull. Korean Chem. Soc. 2011, 32, 3245.   DOI   ScienceOn
23 Hoque, M. E. U.; Lee, H. W. Bull. Korean Chem. Soc. 2012, 33, 663.   DOI   ScienceOn
24 Hoque, M. E. U.; Lee, H. W. Bull. Korean Chem. Soc. 2012, 33, 1879.   DOI   ScienceOn
25 Lee, H. W.; Guha, A. K.; Lee, I. Int. J. Chem. Kinet. 2002, 34, 632.   DOI   ScienceOn
26 Hondal, R. J.; Bruzik, K. S.; Zhao, Z.; Tsai, M. D. J. Am. Chem. Soc. 1997, 119, 5477.   DOI   ScienceOn
27 Omakor, J. E.; Onyido, I.; vanLoon, G. W.; Buncel, E. J. Chem. Soc., Perkin Trans. 2 2001, 324.
28 Gregersen, B. A.; Lopez, X.; York, D. M. J. Am. Chem. Soc. 2003, 125, 7178.   DOI   ScienceOn
29 Hengge, A. C.; Onyido, I. Curr. Org. Chem. 2005, 9, 61.   DOI   ScienceOn
30 Ormazabal-Toledo, R.; Castro, E. A.; Santos, J. G.; Millan, D.; Canete, A.; Contreras, R.; Campodonico, P. R. J. Phys. Org. Chem. 2012, 25, 1359.   DOI   ScienceOn
31 Lee, I.; Koh, H. J.; Lee, B. S.; Lee, H. W. J. Chem. Soc., Chem. Commun. 1990, 335.
32 Lee, I. Chem. Soc. Rev. 1995, 24, 223.   DOI   ScienceOn
33 Marlier, J. F. Acc. Chem. Res. 2001, 34, 283.   DOI   ScienceOn
34 Westaway, K. C. Adv. Phys. Org. Chem. 2006, 41, 217.
35 Villano, S. M.; Kato, S.; Bierbaum, V. M. J. Am. Chem. Soc. 2006, 128, 736.   DOI   ScienceOn
36 Gronert, S.; Fagin, A. E.; Wong, L. J. Am. Chem. Soc. 2007, 129, 5330.   DOI   ScienceOn
37 Poirier, R. A.; Wang, Y.; Westaway, K. C. J. Am. Chem. Soc. 1994, 116, 2526.   DOI   ScienceOn
38 Yamata, H.; Ando, T.; Nagase, S.; Hanamura, M.; Morokuma, K. J. Org. Chem. 1984, 49, 631.   DOI
39 Zhao, X. G.; Tucker, S. C.; Truhlar, D. G. J. Am. Chem. Soc. 1991, 113, 826.   DOI