Origin of the α-Effect in Nucleophilic Substitution Reactions of Y-Substituted Phenyl Benzoates with Butane-2,3-dione Monoximate and Z-Substituted Phenoxides: Ground-State Destabilization vs. Transition-State Stabilization

Mi Sun Kim, Se-Won Min, Jin-A Seo, and Ik-Hwan Um

Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Korea. 'E-mail: ihum@ewha.ac.kr Received September 22, 2009, Accepted October 23, 2009

Second-order rate constants (k_{Nu^-}) have been measured for nucleophilic substitution reactions of Y-substituted phenyl benzoates (**1a-i**) with butane-2,3-dione monoximate (Ox^- , an α -nucleophile) and Z-substituted phenoxides in 80 mol% H₂O/20 mol% DMSO at 25.0 ± 0.1 °C. Hammett plots correlated with σ° and σ^- constants for reactions of **1a-h** with Ox^- exhibit many scattered points. In contrast, the Yukawa-Tsuno plot results in a good linear correlation with $\rho_Y = 2.20$ and r = 0.45, indicating that expulsion of the leaving group occurs in the rate-determining step (RDS). A stepwise mechanism with expulsion of the leaving-group being the RDS has been excluded, since Y-substituted phenoxides are less basic and better nucleofuges than Ox^- . Thus, the reactions have been concluded to proceed through a concerted mechanism. Ox^- is over 10^2 times more reactive than its reference nucleophile, 4-chlorophenoxide (4-CIPhO⁻). One might suggest that stabilization of the transition-state (TS) through intramolecular general acid/base catalysis is responsible for the α -effect since such general acid/base catalysis is not possible for the corresponding reactions with 4-CIPhO⁻. However, destabilization of the ground-state (GS) of Ox⁻ has been concluded to be mainly responsible for the α -effect found in this study on the basis of the fact that the magnitude of the α -effect is independent of the nature of the substituent Y.

Key Words: The α -effect, Concerted mechanism. Ground-state destabilization. Solvent effect. Transition-state stabilization

Introduction

Nucleophiles possessing one or more nonbonding electron pairs on the atom α to the nucleophilic site have often been reported to exhibit abnormally enhanced reactivity than would be expected from their basicity.¹⁻¹⁹ Thus, the enhanced reactivity shown by these nucleophiles was termed the α -effect.¹ Numerous studies have been performed to investigate the cause of the α -effect.²⁻¹⁹ Many theories have been advanced to explain the α effect, e.g., destabilization of the ground state (GS) due to electronic repulsion between the nonbonding electron pairs, transition state (TS) stabilization including general acid/base catalysis, thermodynamic stability of products, solvent effects.²⁻¹⁹ However, none of these theories is conclusive. Particularly, solvent effect on the α -effect remains controversial.⁸⁻¹⁹

Solvent effect was suggested to be unimportant since the magnitude of the α -effects was found to be similar for reactions performed in H₂O and in organic solvents such as MeCN and toluene.⁸ Besides, it has been reported that α -nucleophiles are intrinsically more reactive than normal nucleophiles of similar basicity in gas-phase reactions.^{9,10} High-level theoretical calculations have also shown that α -nucleophiles (e.g., HOO⁻, H₂NO⁻, FO⁻ and ClO⁻) exhibit lower activation energies than normal nucleophiles of similar basicity in gas-phase S_N2 reactions.¹¹ Accordingly, solvent effect on the α -effect has been concluded to be unimportant.⁸⁻¹¹ In contrast, DePuy *et al.* concluded that solvent effect is responsible for the α -effect shown by HOO⁻ in H₂O, since the α -nucleophile did not exhibit the α effect in the gas-phase reaction with methyl formate.¹² Furthermore, from recent gas-phase ion-molecule studies, Bierbaum et al. have found that α -nucleophiles such as HOO⁻, BrO⁻ and CIO⁻ do not exhibit enhanced reactivity in gas-phase reactions

with alkyl chlorides.¹³ Accordingly, they have concluded that the α -effect is due to solvent effect but not due to an intrinsic property.^{12,13}

We have initiated a systematic study to investigate the effect of solvent on the α -effect.¹⁴ Our study has shown that solvent effect on the α -effect is remarkable for nucleophilic substitution reactions of 4-nitrophenyl acetate (PNPA) with butane-2.3dione monoximate (Ox⁻, an α -nucleophile) and 4-chlorophenoxide (4-ClPhO⁻, a reference nucleophile) in DMSO-H₂O mixtures of varying compositions.¹⁴ It has been found that the α -effect (i.e., $k_{\rm UN}$ - / $k_{4-{\rm ClPhO}^-}$) increases as the DMSO content in the medium increases up to *ca*. 50 mol% DMSO and then decreases thereafter, resulting in a bell-shaped α -effect profile.¹⁴ Similar bell-shaped α -effect profiles have been obtained for the corresponding reactions of aryl acetates. 4-nitrophenyl benzoate, thionobenzoate, benzenesulfonate, and diphenylphosphinate, although the magnitude of the α -effect is highly dependent on the nature of the electrophilic center.¹⁵⁻¹⁹

Our calorimetric study has revealed that Ox^- is *ca.* 4 kcal/mol less solvated than 4-ClPhO⁻ in H₂O.^{14b} Furthermore, it has been found that Ox^- becomes more destabilized than 4-ClPhO⁻ as the DMSO content in the medium increases up to *ca.* 50 mol% DMSO. and then the difference in their solvation energies remains nearly constant upon further addition of DMSO.^{14b} Dissection of the α -effect found in the reactions of PNPA into TS and GS contributions through combination of the kinetic data with calorimetric data has led us to conclude that destabilization of the α -effect up to 50 mol% DMSO (i.e., GS effect) while differential stabilization of TS contributes to the decreasing α -effect beyond 50 mol% DMSO.^{14b}

Our study has been extended to reactions of Y-substituted

 $\begin{array}{l} Y = 3\text{-}COMe \ (1a), \ 3\text{-}CHO \ (1b), \ 3\text{-}NO_2 \ (1c), \ 4\text{-}COMe \ (1d), \ 4\text{-}CHO \ (1e), \\ 4\text{-}NO_2 \ (1f), \ 4\text{-}Cl\text{-}2\text{-}NO_2 \ (1g), \ 3\text{,}4\text{-}(NO_2)_2 \ (1h), \ 2\text{,}4\text{-}(NO_2)_2 \ (1i). \end{array}$

Nu⁻ = Me⁻
$$C-C=NO^{-}(Ox^{-})$$

 $TO-Z$, where Z = 4-Me, H, 4-Cl, 3-Cl, 4-COMe, 4-CN.

phenyl benzoates (1a-i) with Ox^- and Z-substituted phenoxides (Scheme 1) to investigate the origin of the α -effect. Comparison of the results obtained in the current study with those reported previously for the corresponding reactions with hydrazine and glycylglycine has shown that destabilization of Ox^- is more important than stabilization of TS for the α -effect in the current system.

Results and Discussion

Reactions were performed under pseudo-first-order conditions with the concentration of nucleophile in excess over the substrate concentration. All reactions obeyed first-order kinetics with quantitative liberation of Y-substituted phenoxide ion. Pseudo-first-order rate constants (k_{obsd}) were calculated from the equation $\ln(A_{\infty} - A_t) = -k_{obsd}t + C$. The plots of k_{obsd} vs. nucleophile concentration were linear with positive intercepts. Thus, the rate law is given as eq (1), in which k_o represents the contribution of H₂O and/or OH⁻ from hydrolysis of the anionic nucleophiles to the k_{obsd} values. Accordingly, second-order rate constants (k_{Nu^-}) were determined from the slope of the linear plots and summarized in Tables 1 and 2. It is estimated from replicate runs that the uncertainty in the rate constants is less than ±3%.

Rate = k_{obsd} [substrate], where $k_{\text{obsd}} = k_{\text{Nu}}$ -[nucleophile] + k_{o} (1)

Reaction Mechanism. As shown in Table 1, second-order rate constant for reactions with Ox^- , an α -nucleophile, increases as

the leaving-group basicity decreases, e.g., $k_{\rm UN}$ - increases from 0.703 M⁻¹s⁻¹ to 34.2 and 961 M⁻¹s⁻¹ as the pK_a of the conjugate acid of the leaving group decreases from 10.4 to 7.79 and 5.60, in turn. A similar result is shown for the corresponding reactions with 4-ClPhO⁻ (a reference nucleophile), although it is much less reactive than Ox⁻. The α -effect shown by Ox⁻ will be discussed in the following section.

One might expect that a partial negative charge develops on the oxygen atom of the leaving aryloxide when expulsion of the leaving group occurs either in a concerted or stepwise mechanism. Such negative charge can be delocalized on the substituent Y through resonance interactions. Thus, σ^{-} constants would exhibit a good Hammett correlation if expulsion of the leaving group occurs at rate-determining step (RDS). In contrast. σ° constants would result in a better Hammett correlation than σ constants if expulsion of the leaving group occurs after RDS. Thus. Hammett plots have been constructed for reactions of Y-substituted phenvl benzoates (1a-h) with Ox⁻ using $\sigma^$ and σ° constants to deduce the reaction mechanism. As shown in Figure 1, the Hammett plot correlated with σ constants exhibits a slightly better correlation coefficient than that correlated with σ° constants (inset). However, both Hammett plots show many scattered points. Accordingly, one cannot get any conclusive information from these plots.

Yukawa-Tsuno plots have been reported to be highly informative to clarify ambiguities in reaction mechanism for nucleophilic substitution reactions of various esters (e.g., aryl benzoates, thionobenzoates, and diphenylphosphinates).²¹⁻²³ Thus, a Yukawa-Tsuno plot has been constructed for reactions of 1a-h with Ox⁻ in Figure 2. One can see that the Yukawa-Tsuno plots exhibit a good linear correlation with $\rho_{\rm Y} = 2.20$ and r = 0.45. The r value in the Yukawa-Tsuno equation (eq 2) represents the extent of resonance contribution between the reaction site and substituent $Y_{\cdot}^{24.25}$ Thus, the *r* value of 0.45 indicates that a negative charge develops partially on the oxygen atom of the leaving aryloxide. Thus, one might suggest two different mechanisms to account for the result, i.e., a concerted mechanism and a stepwise pathway in which departure of the leaving group occurs in the RDS. However, one can exclude the latter mechanism since the leaving Y-substituted phenoxides are less basic and better nucleofuges than the incoming Ox⁻. Accordingly, one can conclude that the current reactions proceed through a concerted mechanism.

Table 1. Summary of Second-order Rate Constants for Reactions of Y-Substituted Phenyl Benzoates (1a-i) with Butane-2,3-dione Monoximate (Ox^{-}) and 4-Chlorophenoxide (4-ClPhO⁻) in 80 mol% H₂O / 20 mol% DMSO at 25.0 ± 0.1 °C.⁴

	Y	рК _а У-Рьон	$k_{\rm ON} - M^{-1} {\rm s}^{-1}$	$k_{4-{\rm CIPhO}^{-}}/{ m M}^{-1}{ m s}^{-1}$	$k_{ m Ox^+}$ / $k_{ m 4-ClPhO^+}$
1a	3-COMe	10.4	0.703	3.45×10^{-3}	204
1b	3-CHO	10.1	1.22	6.10×10^{-3}	200
1c	3-NO ₂	9.32	9.78	$4.16 imes 10^{-2}$	235
1d	4-COMe	8.94	4.01	2.36×10^{-2}	170
1e	4-CHO	8.45	8.39	5.52×10^{-2}	152
1f	$4-NO_2$	7,79	34.2	1.85×10^{-1}	185
1g	4-Cl-2-NO ₂	6.92	47.1	2.15×10^{-1}	219
1 h	3,4-(NO2)2	5.60	961	7.19	134
1 i	2,4-(NO2) ₂	4.11	-	6.50	-

^aThe pKa values in 20 mol% DMSO and kinetic data for reactions with 4-CIPhO⁻ were taken from ref. 20.

Figure 1. Hammett plots correlated with σ^{-} and σ° (inset) for reactions of Y-substituted phenyl benzoates (1**a-h**) with Ox⁻ in 80 mol% H₂O / 20 mol% DMSO at 25.0 ± 0.1 °C. The identity of points is given in Table 1.

Figure 2. Yukawa-Tsuno plots for reactions of Y-substituted phenyl benzoates (1a-h) with Ox^{-} in 80 mol% H₂O / 20 mol% DMSO at 25.0 ± 0.1 °C. The identity of points is given in Table 1.

$$\log k^{Y}/k^{H} = \rho_{Y} \left(\sigma^{\circ} + r \left(\sigma^{-} - \sigma^{\circ}\right)\right)$$
(2)

Origin of the α **-Effect: GS Destabilization** *vs.* **TS Stabilization.** As mentioned in the preceding section. Ox⁻ is over 10² times more reactive than its reference nucleophile. 4-CIPhO⁻, although the basicity of the two nucleophiles is known to be similar (e.g., the p K_a values of the conjugate acids of Ox⁻ and 4-CIPhO⁻ in 20 mol% DMSO were reported to be 10.68 and 10.58, respectively).¹⁶ Interestingly, Table 1 shows that the mag-

Table 2. Summary of Second-order Rate Constants (k_{Z-PhO-}) for Reactions of Y-Substituted Phenyl Benzoates (Y = 4-NO₂, **1f**, Y = 4-Cl-2-NO₂, **1g**; Y = 3,4-(NO₂)₂, **1h**; Y = 2,4-(NO₂)₂, **1i**) with Z-Substituted Phenoxides in 80 mol% H₂O / 20 mol% DMSO at 25.0 ± 0.1 °C.^{*a*}

Entry	Z.	рКа ^{Z-РЬОН}	$10^2 k_{\text{Z-PhO}^-} / \text{M}^{-1} \text{s}^{-1}$			
			lf	lg	1h	1i
l	4-Me	11.7	92.5	84.1	2080	2170
2	Н	11.3	45.2	35.5	1580	1160
3	4 - C1	10.5	18.5	21.5	719	650
4	3-Cl	10.2	9.03	11.2	424	397
5	4-COMe	8.94	0.888	0.945	36.0	36.8
6	4-CN	8.60	0.510	0.656	18.6	29.4

^aThe pK_a values in 20 mol⁹ b DMSO and kinetic data for the reactions of 4-nitrophenyl benzoate (1f) were taken from ref. 20.

nitude of the α -effect is independent of the electronic nature of the substituent Y in the leaving group. This is in contrast to our previous report that the α -effect increases linearly with increasing the basicity of the leaving group for reactions of Y-substituted phenyl benzoates with hydrazine (an α -nucleophile) and glycylglycine (a reference nucleophile).²⁶

Stabilization of transition state (TS) through intramolecular H-bonding as modeled by 2 has been suggested to be responsible for the substituent dependent α -effect for the reactions with hydrazine, since such 5-membered H-bonding interaction is not possible for the corresponding reactions with glycylglycine.²⁶ One might draw a similar conclusion that TS stabilization is responsible for the α -effect shown by Ox^- in the current study. This is because TS stabilization through intramolecular general acid/base catalysis as modeled by 3 is possible for the reactions with Ox^- , while such general acid/base catalysis is impossible for the reactions with 4-CIPhO⁻.

If TS stabilization through **3** is responsible for the enhanced reactivity shown by Ox^- , the α -effect should be dependent on the nature of the substituent Y in the leaving group as reported previously for the reactions with hydrazine and glycylglycine.²⁶

However, in fact, the magnitude of the α -effect is independent of the substituent Y (see Table 1), indicating that TS stabilization through general acid/base catalysis is not responsible for the α effect found in this study.

 Ox^{-} has been reported to be 5.7 kcal/mol less solvated than 4-ClPhO⁻ in 20 mol% DMSO.^{14b} which is the reaction medium in this study. Since Ox^{-} and 4-ClPhO⁻ have been employed as a pair of nucleophiles throughout the reactions of 1a-i, the difference in the GS solvation energy of the two nucleophiles remains constant at 5.7 kcal/mol. Accordingly, if the difference

Figure 3. Bronsted-type plots for reactions of Y-substituted phenyl benzoates with Z-substituted phenoxies in 80 mol% H₂O / 20 mol% DMSO at 25.0 ± 0.1 °C. A: Y = 4-NO₂ (1f) and 3,4-(NO₂)₂(1h); B: Y = 4-Cl-2-NO₂ (1g) and 2,4-(NO₂)₂(1i). The identity of points is given in Table 2.

in the GS solvation energies of the two nucleophiles is mainly responsible for the α -effect, one can expect that the magnitude of the α -effect remains nearly constant upon changing the substituent Y in the leaving group. In fact, the α -effect is independent of the nature of Y. Thus, one can suggest that the α -effect found in this study is mainly due to destabilization of Ox^- in the GS.

To examine the above idea, second-order rate constants (k_{Z-PhU^-}) have been measured for reactions of 4 different Y-substituted phenyl benzoates with 6 different Z-substituted phenoxides (Z-PhO⁻). The k_{Z-PhO^-} values are summarized in Table 2 and illustrated graphically in Figures 3A and 3B. Table 2 shows that k_{Z-PhO^-} decreases as the basicity of Z-PhO⁻ decreases in all cases. It is also noted that the $k_{\text{Z-PhO}}$ values for the reactions of **1i** are not always larger than those for the corresponding reactions of **1h**. although 2,4-dinitrophenoxide in **1i** is less basic than 3,4-dinitrophenoxide in **1h**. Similarly, **1g** is not always more reactive than **1f**. although the former possesses a much less basic leaving group (i.e., 4-chloro-2-nitrophenoxide) than the latter does (i.e., 4-nitrophenoxide). One might suggest that steric hindrance caused by the substituent on the 2-position of **1i** and **1g** is responsible for the unusual reactivity order.²⁷

The effect of basicity of Z-PhO⁻ on reactivity is illustrated in Figures 3A and 3B. The Bronsted-type plots are linear with β_{nuc} values varying from 0.73 to 0.69. 0.68 and 0.62 as the substituent Y changes from 4-NO₂ to 4-Cl-2-NO₂, 3,4-(NO₂)₂, and 2.4-(NO₂)₂ in turn, which is in accordance to reactivity-selectivity principle.²⁸

It is well known that the magnitude of the α -effect increases with increasing β_{nuc} values when TS stabilization is responsible for the α -effect.^{2,5,8} The β_{nuc} values determined in this study exhibit a linear correlation with the basicity of the leaving Y-substituted phenoxides (Figure not shown). Thus, one might expect that the α -effect increases with increasing the leaving-group basicity, if TS stabilization (through general acid/base catalysis as modeled by 3) contributes to the current α -effect. However, in fact, the α -effect is independent of the leaving-group basicity, indicating that stabilization of TS is not responsible for the α effect. This is consistent with the preceding argument that the α -effect found in current study is mainly due to GS destabilization.

Conclusions

The current study has allowed us to conclude the following: (1) The Yukawa-Tsuno plot for the reactions of Y-substituted phenyl benzoates (1a-h) with Ox⁻ exhibits good linearity with $\rho_{\rm Y} = 2.20$ and r = 0.45, indicating that expulsion of the leaving group occurs in RDS. (2) A concerted mechanism or a stepwise pathway, in which expulsion of the leaving-group occurs in RDS, can account for the results. However, the latter mechanism has been excluded since Y-substituted phenoxides are less basic and better nucleofuges than the incoming Ox^{-1} ion. (3) Ox^{-1} is over 10⁻ times more reactive than 4-CIPhO⁻ toward 1a-h (i.e., the α -effect). (4) TS stabilization through intramolecular general acid/base catalysis has been ruled out as the origin of the α effect found in the current reactions, since the magnitude of the α -effect is independent of the nature of substituent Y and of β_{nuc} values. (5) Since Ox⁻ has been reported to be 5.7 kcal/mol less solvated than 4-CIPhO⁻ in 20 mol% DMSO, GS destabilization of Ox⁻ has been concluded to be mainly responsible for the α -effect found in this study.

Experimental Section

Materials. Y-Substituted phenyl benzoates were readily prepared from reactions of benzoyl chloride with Y-substituted phenol in anhydrous ether under the presence of triethylamine. The crude products were purified through column chromatography. Other chemicals including butane-2,3-dione monoxime

Origin of the a-Effect

and phenols were of the highest quality available. Doubly glassdistilled water was further boiled and cooled under nitrogen just before use to exclude dissolved CO_2 . Since solubility of the substrates is low in pure water. 80 mol% H₂O/20 mol% DMSO was used as the reaction medium.

Kinetics. The kinetic study was performed using a UV-Vis spectrophotometer for slow reactions ($t_{1/2} > 10$ s) or a stopped-flow spectrophotometer for fast reactions ($t_{1/2} \le 10$ s) equipped with a constant temperature circulating bath. The reactions were followed by monitoring the appearance of Y-substituted phenoxide at a fixed wavelength corresponding the maximum absorption.

Typically, the reaction was initiated by adding 5 μ L of a 0.02 M substrate stock solution in MeCN by a 10 μ L syringe to a 10 mm UV cell containing 2.50 mL of the reaction medium and nucleophile. The nucleophile stock solution of *ca*. 0.2 M for the reactions was prepared in 25.0 mL volumetric flask under nitrogen by adding 2 equiv. of butan-2,3-dione monoxime (or Z-substituted phenol) to 1 equiv. of standardized NaOH solution to obtain a self-buffered solution. Transfers of solutions were carried out by means of gas-tight syringes. All reactions were carried out under pseudo-first-order conditions in which nucleophile concentrations were at least 20 times greater than the substrate concentration.

Product Analysis. Y-substituted phenoxide (and/or it conjugate acid) was identified as one of the products by comparison of the UV-Vis spectra at the end of reactions with the authentic sample.

Acknowledgments. The authors are grateful for the financial support from the Korea Research Foundation (KRF-2008-313-C00500) and BK 21 Scholarship.

References

- 1. Edwards, J. O.; Pearson, R. G. J. Am. Chem. Soc. 1962, 84, 16-24.
- Recent Reviews: (a) Buncel, E.; Um, I. H. Tetrahedron 2004, 60, 7801-7825. (b) Buncel, E.; Um, I. H.; Terrier, F. The Chemistry of Hydroxylamines, Oximes and Hydroxamic Acids: Wiley Press: West Sussex, 2009; Chapter 17.
- (a) Kirby, A. J.; Tondo, D. W.; Medeiros, M.; Souža, B. S.; Priebe, J. P.; Lima, M. F.; Nome, F. J. Am. Chem. Soc. 2009, 131, 2023-2028. (b) Kirby, A. J.; Lima, M. F.; da Silva, D.; Roussev, C. D.; Nome, F. J. Am. Chem. Soc. 2006, 128, 16944-16952. (c) Kirby, A. J.; Dutta-Roy, N.; da Silva, D.; Goodman, J. M.; Lima, M. F.; Roussev, C. D.; Nome, F. J. Am. Chem. Soc. 2005, 127, 7033-7040.
- (a) Terrier, F.; Rodriguez-Dafonte, P.; Le Guevel, E.; Moutiers, G. Org. Biomol. Chem. 2006, 4, 4352-4363. (b) Terrier, F.; Le Guevel, E.; Chatrousse, A. P.; Moutiers, G.; Buncel, E. Chem. Commun. 2003, 600-601. (c) Buncel, E.; Cannes, C.; Chatrousse, A. P.; Terrier, F. J. Am. Chem. Soc. 2002, 124, 8766-8767. (d) Moutiers, G.; Le Guevel, E.; Cannes, C.; Terrier, F.; Buncel, E. Eur. J. Org. Chem. 2001, 17, 3279-3284.
- (a) Fountain, K. R. J. Phys. Org. Chem. 2005, 18, 481-485. (b) Fountain, K. R.; Felkerson, C. J.; Driskell, J. D.; Lamp, B. D. J. Org. Chem. 2003, 68, 1810-1814. (c) Fountain, K. R.; Tad-y, D. B.; Paul, T. W.; Golynskiy, M. V. J. Org. Chem. 1999, 64, 6547-6553.
- (a) Jencks, W. P. Catalysis in Chemistry and Enzymology, Mc-Graw-Hill: New York, 1969; pp. 107-111. (b) Herschlag, D.; Je-

ncks, W. P. J. Am. Chem. Soc. **1990**, *112*, 1951-1956. (c) Jencks, W. P. Chem. Rev. **1985**, *85*, 511-526. (d) Jencks, W. P.; Gilchrist, M. J. Am. Chem. Soc. **1968**, *90*, 2622-2637.

- (a) Bernasconi, C. F.; Leyes, A. E.; Eventova, I.; Rappoport, Z. J. Am. Chem. Soc. 1995, 117, 1703-1711. (b) Bernasconi, C. F. Adv. Phys. Org. Chem. 1992, 27, 119-238. (c) Bernasconi, C. F.; Stronach, M. W. J. Org. Chem. 1991, 56, 1993-2001.
- (a) Curci, R.; Di Furia, F. Int. J. Chem. Kinet. 1975, 7, 341-349.
 (b) Gregory, M. J.; Bruice, T. C. J. Am. Chem. Soc. 1967, 89, 4400-4405.
- Patterson, E. V.; Fountain, K. R. J. Org. Chem. 2006, 71, 8121-8125.
- McAnoy, A. M.; Paine, M. R.; Blanksby, S. J. Org. Biomol. Chem. 2008, 6, 2316-2326.
- (a) Ren, Y.; Yamataka, H. J. Comput. Chem. 2009, 30, 358-365.
 (b) Ren, Y.; Yamataka, H. J. Org. Chem. 2007, 72, 5660-5667. (c) Ren, Y.; Yamataka, H. Chem. Eur. J. 2007, 13, 677-682. (d) Ren, Y.; Yamataka, H. Org. Lett. 2006, 8, 119-121.
 Depuy, C. H.; Della, E. W.; Filley, J.; Grabowski, J. J.; Bierbaum,
- Depuy, C. H.; Della, E. W.; Filley, J.: Grabowski, J. J.; Bierbaum, V. M. J. Am. Chem. Soc. 1983, 105, 2481-2482.
- Villano, S. M.; Eyet, N.; Lineberger, W. C.; Bierbaum, V. M. J. Am. Chem. Soc. 2009, 131, 8227-8233.
- (a) Buncel, E.; Um, I. H. Chem. Commun. 1986, 595-596. (b) Um, I. H.: Buncel, E. J. Org. Chem. 2000, 65, 577-582.
- Um, I. H.; Hwang, S. J.; Buncel, E. J. Org. Chem. 2006, 71, 915-920.
- Um, I. H.; Shin, Y. H.; Han, J. Y.; Buncel, E. Con. J. Chem. 2006, 84, 1550-1556.
- (a) Um, I. H.; Hong, J. Y.; Buncel, E. Chem. Commun. 2001, 27-28.
 (b) Tarkka, R. M.; Buncel, E. J. Am. Chem. Soc. 1995, 117, 1503-1507.
- (a) Um, I. H.; Park, Y. M.; Buncel, E. Chem. Commun. 2000, 1917-1918. (b) Um, I. H.; Lee, E. J.; Buncel, E. J. Org. Chem. 2001, 66, 4859-4864.
- (a) Um, I. H.; Han, J. Y.; Buncel, E. Chem. Eur. J. 2009, 15, 1011-1017.
 (b) Um, I. H.; Buncel, E. J. Am. Chem. Soc. 2001, 123, 11111-11112.
- 20. Im, L. R.; Um, I. H. Bull. Korean Chem. Soc. 2009, 30, 2403-2407.
- (a) Um, I. H.; Min, H. S.; Ahn, J. A.; Hahn, H. J. J. Org. Chem. 2000, 65, 5659-5663. (b) Um, I. H.; Kim, K. H.; Park. H. R.; Fujio, M.; Tsuno Y. J. Org. Chem. 2004, 69, 3937-3942.
- 22. Um, I. H.; Hwang, S. J.; Yoon, S. R.; Jeon, S. E.; Bae, S. K. J. Org. Chem. 2008, 73, 7671-7677.
- (a) Um, I. H.; Han, J. Y.; Shin, Y. H. J. Org. Chem. 2009, 74, 3073-3078. (b) Um, I. H.; Han, J. Y.; Hwang, S. J. Chem. Eur. J. 2008, 14, 7324-7330. (c) Um, I. H.; Akhtar, K.; Shin, Y. H.; Han, J. Y. J. Org. Chem. 2007, 72, 3823-3829. (d) Um, I. H.; Park, J. E.; Shin, Y. H. Org. Biomol. Chem. 2007, 5, 3539-3543.
- (a) Tsuno, Y.; Fujio, M. Adv. Phys. Org. Chem. 1999, 32, 267-385.
 (b) Tsuno, Y.; Fujio, M. Chem. Soc. Rev. 1996, 25, 129-139. (c) Yukawa, Y.; Tsuno, Y. Bull. Chem. Soc. Jpn. 1959, 32, 965-970.
- (a) Than, S.; Maeda, H.; Irie, M.; Kikukawa, K.; Mishima, M. Int. J. Mass. Spec. 2007, 263, 205-214. (b) Maeda, H.; Irie, M.; Than, S.; Kikukawa, K.: Mishima, M. Bull. Chem. Soc. Jpn, 2007, 80, 195-203. (c) Mishima, M.; Maeda, H.; Than, S.: Irie, M.; Kikukawa, K. J. Phys. Org. Chem. 2006, 19, 616-623. (d) Fujio, M.; Alam, M. A.; Umezaki, Y.; Kikukawa, K.; Fujiyama, R.; Tsuno, Y. Bull. Chem. Soc. Jpn. 2007, 80, 2378-2383. (e) Fujio, M.; Umezaki, Y.: Alam, M. A.; Kikukawa, K.; Fujiyama, R.; Tsuno, Y. Bull. Chem. Soc. Jpn. 2006, 79, 1091-1099.
- Um, I. H.; Chung, E. K.; Lee, S. M. Can. J. Chem. 1998, 76, 729-737.
- (a) Seo, J. A.; Lee, H. M.; Um, I. H. Bull. Korean Chem. Soc. 2008, 29, 1915-1919. (b) Seo, J. A.; Chun, S. M.; Um, I. H. Bull. Korean Chem. Soc. 2008, 29, 1459-1463. (c) Um, I. H.; Akhtar, K. Bull. Korean Chem. Soc. 2008, 29, 772-776.
- 28. Pross, A. Adv. Phys. Org. Chem. 1977, 14, 69-132.