Browse > Article
http://dx.doi.org/10.5012/bkcs.2012.33.7.2260

Kinetics and Mechanism of the Pyridinolysis of Dimethyl Isothiocyanophosphate in Acetonitrile  

Adhikary, Keshab Kumar (Department of Chemistry, Inha University)
Lee, Hai-Whang (Department of Chemistry, Inha University)
Publication Information
Abstract
The kinetics and mechanism of the pyridinolysis ($XC_5H_4N$) of dimethyl isothiocyanophosphate are investigated in acetonitrile at $55.0^{\circ}C$. The Hammett and Br$\ddot{o}$nsted plots for substituent X variations in the nucleophiles exhibit two discrete slopes with a break region between X = 3-Ac and 4-Ac. These are interpreted to indicate a mechanistic change at the break region from a concerted to a stepwise mechanism with a rate-limiting expulsion of the isothiocyanate leaving group from the intermediate. The relatively large ${\beta}x$ values imply much greater fraction of frontside nucleophilic attack TSf than that of backside attack TSb. The steric effects of the two ligands play an important role to determine the pyridinolysis rates of isothiocyanophosphates.
Keywords
Phosphoryl transfer reaction; Pyridinolysis; Dimethyl isothiocyanophosphate; Biphasic discrete free energy relationship;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
1 Spillane, W. J.; Hogan, G.; McGrath, P.; King, J.; Brack, C. J. Chem. Soc., Perkin Trans. 2 1996, 2099.
2 Ritchie, C. D. Solute Solvent Interactions; Marcel- Dekker: New York, 1969; p 228.
3 Koh, H. J.; Han, K. L.; Lee, H. W.; Lee, I. J. Org. Chem. 1998, 63, 9834.   DOI
4 Taft, R. W. Steric Effect in Organic Chemistry; Newman, M. S., Ed.; Wiley: New York, 1956; Chapter 3.
5 Hoque, M. E. U.; Dey, N. K.; Kim, C. K.; Lee, B. S.; Lee, H. W. Org. Biomol. Chem. 2007, 5, 3944.   DOI
6 Exner, O. Correlation Analysis in Chemistry: Recent Advances; Chapman, N. B., Shorter, J., Eds.; Plenum Press: New York, 1978; p 439.
7 Lee, I. Chem. Soc. Rev. 1990, 19, 317.   DOI
8 Lee, I. Adv. Phys. Org. Chem. 1992, 27, 57.
9 Lee, I.; Lee, H. W. Collect. Czech. Chem. Commun. 1999, 64, 1529.
10 Hoque, M. E. U.; Lee, H. W. Bull. Korean Chem. Soc. 2012, 33, 1055.   DOI   ScienceOn
11 Hoque, M. E. U.; Lee, H. W. Bull. Korean Chem. Soc. 2011, 32, 3505.   DOI
12 Gresser, M. J.; Jencks, W. P. J. Am. Chem. Soc. 1977, 99, 6963, 6970.   DOI
13 Guha, A. K.; Lee, H. W.; Lee, I. J. Org. Chem. 2000, 65, 12.   DOI
14 Hehre, W. J.; Random, L.; Schleyer, P. V. R.; Pople, J. A. Ab Initio Molecular Orbital Theory; Wiley: New York, 1986; Chapter 4.
15 Dey, N. K.; Han, I. S.; Lee, H. W. Bull. Korean Chem. Soc. 2007, 28, 2003.   DOI
16 Guha, A. K.; Hoque, M. E. U.; Lee, H. W. Bull. Korean Chem. Soc. 2011, 32, 1375.   DOI
17 Castro, E. A.; Ibanez, F.; Salas, M.; Santos, J. G.; Sepulveda, P. J. Org. Chem. 1993, 58, 459.   DOI
18 Castro, E. A.; Leandro, L.; Millan, P.; Santos, J. G. J. Org. Chem. 1999, 64, 1953.   DOI
19 Castro, E. A.; Cubillos, M.; Santos, J. G. J. Org. Chem. 2001, 66, 6000.   DOI
20 Bernat, J.; Kristian, P.; Guspanova, J.; Imrich, J.; Busova, T. Collect. Czech. Chem. Commun. 1977, 62, 1491.
21 Lee, I.; Kim, C. K.; Han, I. S.; Lee, H. W.; Kim, W. K.; Kim, Y. B. J. Phys. Chem. B 1999, 103, 7302.   DOI
22 Han, I. S.; Kim, C. K.; Lee, H. W. Bull. Korean Chem. Soc. 2011, 32, 889.   DOI
23 Fischer, A.; Galloway, W. J.; Vaughan, J. J. Chem. Soc. 1964, 3591.   DOI
24 Dean, J. A. Handbook of Organic Chemistry; McGraw-Hill: New York, 1987; Chapter 8.
25 Coetzee, J. F. Prog. Phys. Org. Chem. 1967, 4, 45.   DOI
26 Dey, N. K.; Hoque, M. E. U.; Kim, C. K.; Lee, H. W. J. Phys. Org. Chem. 2010, 23, 1022.   DOI   ScienceOn
27 Adhikary, K. K.; Lee, H. W.; Lee, I. Bull. Korean Chem. Soc. 2012, 33, 1042.   DOI
28 Adhikary, K. K.; Lee, H. W.; Lee, I. Bull. Korean Chem. Soc. 2003, 24, 1135.   DOI