• 제목/요약/키워드: Computer-assisted numerical analysis

검색결과 9건 처리시간 0.022초

설계 민감도와 신뢰도 분석에 근거한 전자기기의 다목적 최적화 (Multi-Objective Optimization of Electromagnetic Device Based on Design Sensitivity Analysis and Reliability Analysis)

  • 렌지얀;장전해;박찬혁;고창섭
    • 전기학회논문지
    • /
    • 제62권1호
    • /
    • pp.49-56
    • /
    • 2013
  • In this paper, for constrained optimization problem, one multi-objective optimization algorithm that ensures both performance robustness and constraint feasibility is proposed when uncertainties are involved in design variables. In the proposed algorithm, the gradient index of objective function assisted by design sensitivity with the help of finite element method is applied to evaluate robustness; the reliability calculated by the sensitivity-assisted Monte Carlo simulation method is used to assess the feasibility of constraint function. As a demonstration, the performance and numerical efficiency of the proposed method is investigated through application to the optimal design of TEAM problem 22--a superconducting magnetic energy storage system.

Optimal Design of Inverse Electromagnetic Problems with Uncertain Design Parameters Assisted by Reliability and Design Sensitivity Analysis

  • Ren, Ziyan;Um, Doojong;Koh, Chang-Seop
    • Journal of Magnetics
    • /
    • 제19권3호
    • /
    • pp.266-272
    • /
    • 2014
  • In this paper, we suggest reliability as a metric to evaluate the robustness of a design for the optimal design of electromagnetic devices, with respect to constraints under the uncertainties in design variables. For fast numerical efficiency, we applied the sensitivity-assisted Monte Carlo simulation (S-MCS) method to perform reliability calculation. Furthermore, we incorporated the S-MCS with single-objective and multi-objective particle swarm optimization algorithms to achieve reliability-based optimal designs, undertaking probabilistic constraint and multi-objective optimization approaches, respectively. We validated the performance of the developed optimization algorithms through application to the optimal design of a superconducting magnetic energy storage system.

A New Sensitivity-Based Reliability Calculation Algorithm in the Optimal Design of Electromagnetic Devices

  • Ren, Ziyan;Zhang, Dianhai;Koh, Chang Seop
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권2호
    • /
    • pp.331-338
    • /
    • 2013
  • A new reliability calculation method is proposed based on design sensitivity analysis by the finite element method for nonlinear performance constraints in the optimal design of electromagnetic devices. In the proposed method, the reliability of a given design is calculated by using the Monte Carlo simulation (MCS) method after approximating a constraint function to a linear one in the confidence interval with the help of its sensitivity information. The validity and numerical efficiency of the proposed sensitivity-assisted MCS method are investigated by comparing its numerical results with those obtained by using the conventional MCS method and the first-order reliability method for analytic functions and the TEAM Workshop Problem 22.

다공성 매질 모델 기반 출구유량 감소 모사 기법을 이용한 산업기계용 엔진룸 열유동해석 (Thermal Flow Analysis of an Engine Room using a Porous Media Model for Imitating Flow Rate Reduction at Outlet of Industrial Machines)

  • 최요한;유일훈;이철희
    • 드라이브 ㆍ 컨트롤
    • /
    • 제19권1호
    • /
    • pp.62-68
    • /
    • 2022
  • Considering the characteristics of industrial machines that lack vehicle-induced wind, forced convection by a cooling fan is mostly required. Therefore, numerical analysis of an engine room is usually performed to examine the cooling performance in the room. However, most engine rooms consist of a number of parts and components at specific positions, leading to high costs for numerical modeling and simulation. In this paper, a new methodology for three-dimensional computer-assisted design simplification was proposed, especially for the pile of components and parts at the engine room outlet. A porous media model and regression analysis were used to derive a meta-model for imitating the flow rate reduction at the outlet by the pile. The results showed that the fitted model was reasonable considering the coefficient of determination. The final numerical model of the engine room was then used to simulate the velocity distribution by changing the mass flow rate at the outlet. The results showed that both velocity distributions were significantly changed in each case and the meta-model was valid in imitating the flow rate reduction by some piles of components and parts.

Dynamic response of railway bridges traversed simultaneously by opposing moving trains

  • Rezvani, Mohammad Ali;Vesali, Farzad;Eghbali, Atefeh
    • Structural Engineering and Mechanics
    • /
    • 제46권5호
    • /
    • pp.713-734
    • /
    • 2013
  • Bridges are vital components of the railroads. High speed of travel, the periodic and oscillatory nature of the loads and the comparable vehicle bridge weight ratio distinguish the railway bridges from the road bridges. The close proximity between estimations by some numerical methods and the measured data for the bridge-vehicle dynamic response under the moving load conditions has boosted the confidence in the numerical analyses. However, there is hardly any report regarding the responses of the railway bridges under the effect of the trains entering from the opposite directions while running at unequal speed and having dissimilar geometries. It is the purpose of this article to present an analytical method for the dynamic analysis of the railway bridges under the influence of two opposing series of moving loads. The bridge structural damping and many modes of vibrations are included. The concept of modal superposition is used to solve for the system motion equations. The method of solution is indeed a computer assisted analytical solution. It solves for the system motion equations and gives output in terms of the bridge deflection. Some case studies are also considered for the validation of the proposed method. Furthermore, the effects of varying some parameters such as the distance between the bogies, and the bogie wheelset distance are studied. Also, the conditions of resonance and cancellation in the dynamic response for a variety of vehicle-bridge specifications are investigated.

Numerical Model for Cerebrovascular Hemodynamics with Indocyanine Green Fluorescence Videoangiography

  • Hwayeong Cheon;Young-Je Son;Sung Bae Park;Pyoung-Seop Shim;Joo-Hiuk Son;Hee-Jin Yang
    • Journal of Korean Neurosurgical Society
    • /
    • 제66권4호
    • /
    • pp.382-392
    • /
    • 2023
  • Objective : The use of indocyanine green videoangiography (ICG-VA) to assess blood flow in the brain during cerebrovascular surgery has been increasing. Clinical studies on ICG-VA have predominantly focused on qualitative analysis. However, quantitative analysis numerical modelling for time profiling enables a more accurate evaluation of blood flow kinetics. In this study, we established a multiple exponential modified Gaussian (multi-EMG) model for quantitative ICG-VA to understand accurately the status of cerebral hemodynamics. Methods : We obtained clinical data of cerebral blood flow acquired the quantitative analysis ICG-VA during cerebrovascular surgery. Varied asymmetric peak functions were compared to find the most matching function form with clinical data by using a nonlinear regression algorithm. To verify the result of the nonlinear regression, the mode function was applied to various types of data. Results : The proposed multi-EMG model is well fitted to the clinical data. Because the primary parameters-growth and decay rates, and peak center and heights-of the model are characteristics of model function, they provide accurate reference values for assessing cerebral hemodynamics in various conditions. In addition, the primary parameters can be estimated on the curves with partially missed data. The accuracy of the model estimation was verified by a repeated curve fitting method using manipulation of missing data. Conclusion : The multi-EMG model can possibly serve as a universal model for cerebral hemodynamics in a comparison with other asymmetric peak functions. According to the results, the model can be helpful for clinical research assessment of cerebrovascular hemodynamics in a clinical setting.

A New Reliability-Based Optimal Design Algorithm of Electromagnetic Problems with Uncertain Variables: Multi-objective Approach

  • Ren, Ziyan;Peng, Baoyang;Liu, Yang;Zhao, Guoxin;Koh, Chang-Seop
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권2호
    • /
    • pp.704-710
    • /
    • 2018
  • For the optimal design of electromagnetic device involving uncertainties in design variables, this paper proposes a new reliability-based optimal design algorithm for multiple constraints problems. Through optimizing the nominal objective function and maximizing the minimum reliability, a set of global optimal reliable solutions representing different reliability levels are obtained by the multi-objective particle swarm optimization algorithm. Applying the sensitivity-assisted Monte Carlo simulation method, the numerical efficiency of optimization procedure is guaranteed. The proposed reliability-based algorithm supplying multi-reliable solutions is investigated through applications to analytic examples and the optimal design of two electromagnetic problems.

VARTM공정에서의 거시적 수지 유동의 Dual-Scale 분석 (A Dual-Scale Analysis of Macroscopic Resin Flow in Vacuum Assisted Resin Transfer Molding Process)

  • 박윤희;강문구;이우일
    • Composites Research
    • /
    • 제15권6호
    • /
    • pp.1-7
    • /
    • 2002
  • VARTM공정에서는 수지유동을 빠르게 하기 위해 투과촉진층이 사용되는데 투과촉진층과 섬유층 사이의 수지 속도차가 크다. VARTM제품은 길이에 비해서 두께가 얇으나 두 가지 다른 유통 매질 사이에 발생하는 lead-lag 유통을 관찰하기 위해서는 두께 방향을 고려한 3차원해석이 요구된다. 그런데 3차원 해석에 있어서 계산 시간이 문제가 된다. 일반 PC로 절점수가 많은 3차원 문제를 해석하려면 오랜 시간이 소요되므로 비실용적이다. 그래서 본 연구에서는 dual-scale 기법을 도입하여 전체 영역은 2.5차원으로 해석하고 주요한 관심 영역만을 3차원으로 해석하였다. 2.5차원 시뮬레이션만으로 예측하기 어려운 lead-lag 유동과 같은 특이한 유동 경향을 국부적인 3차인 해석을 통해서 발견학 수 있었다. 본 연구에서 개발된 global-local 해석기술은 일반 PC에서 적당한 계산 시간 내에 균일하지 않은 유동 매질 사이를 지나는 유동흐름의 특성 분석에 효과적으로 사용될 수 있다.

무선 MAN에서 Best Effort 서비스를 위한 MAC 방식의 설계 및 성능 분석 (MAC Schemes for Best Effort Service in Wireless MAN: Design and Performance Analysis)

  • 박진경;신우철;하준;최천원
    • 대한전자공학회논문지TC
    • /
    • 제43권11호
    • /
    • pp.128-140
    • /
    • 2006
  • IEEE 802.16 무선 MAN는 다양한 서비스를 제공하는 고정된 일대다 광대역 무선 접근 시스템의 무선 인터페이스를 규정하고 있다. 무선 MAN에서 기지국과 가입자국 사이에 지원되는 서비스 부류 중 best effort 부류는 가장 낮은 우선순위를 부여받고 예약 ALOHA 기반 MAC 방식의 지원을 받는다. 그러나 무선 MAN 표준안은 MAC 방식의 골격만을 명시할 뿐 세부 요소를 밝히고 있지 않다. 이에 본 논문에서는 가입자국이 요청을 통해 요구하는 자원의 양과 기지국이 요청에게 부여하는 자원의 양에 집중하여 여러 가지 자원 요구 규칙과 자원 부여 규칙을 제안한다. 이어서 요구 자원의 양과 부여 자원의 양을 결정하는 규칙을 조합하고 이를 MAC 방식의 골격에 접목하여 후보 MAC 방식을 구성한다. 한편 대부분의 자원이 다른 서비스에 의해 선점된 후 희박한 자원만이 best effort 서비스에게 남아 있는 열악한 환경을 예상할 수 있다. 이러한 상황을 인식하여 후보 MAC 방식의 throughput 및 지연 성능을 평가한다. 특히 포화된 환경에서 throughput을 근사적으로 구하는 해석적 방법을 개발한다. 계량적 결과로부터 비개폐식 고갈형 요구 방식과 충족형 부여 방식의 조합을 채택한 후보 MAC 방식이 공평성을 대가로 뛰어난 성능을 보임을 관찰한다.