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Objective : The use of indocyanine green videoangiography (ICG-VA) to assess blood flow in the brain during cerebrovascular 
surgery has been increasing. Clinical studies on ICG-VA have predominantly focused on qualitative analysis. However, quantitative 
analysis numerical modelling for time profiling enables a more accurate evaluation of blood flow kinetics. In this study, we 
established a multiple exponential modified Gaussian (multi-EMG) model for quantitative ICG-VA to understand accurately the 
status of cerebral hemodynamics.
Methods : We obtained clinical data of cerebral blood flow acquired the quantitative analysis ICG-VA during cerebrovascular 
surgery. Varied asymmetric peak functions were compared to find the most matching function form with clinical data by using a 
nonlinear regression algorithm. To verify the result of the nonlinear regression, the mode function was applied to various types of data.
Results : The proposed multi-EMG model is well fitted to the clinical data. Because the primary parameters—growth and decay 
rates, and peak center and heights—of the model are characteristics of model function, they provide accurate reference values for 
assessing cerebral hemodynamics in various conditions. In addition, the primary parameters can be estimated on the curves with 
partially missed data. The accuracy of the model estimation was verified by a repeated curve fitting method using manipulation of 
missing data.
Conclusion : The multi-EMG model can possibly serve as a universal model for cerebral hemodynamics in a comparison with other 
asymmetric peak functions. According to the results, the model can be helpful for clinical research assessment of cerebrovascular 
hemodynamics in a clinical setting.
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INTRODUCTION

Indocyanine green videoangiography (ICG-VA) is a renowned 

tool for providing relevant information on vascular blood 

flow of patients during cerebrovascular surgery5,10,13,18,29,31). Sev-

eral medical research groups have employed ICG-VA in neu-
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rosurgery studies. Most of them have used ICG-VA to assess 

vascular blood flow with qualitative analysis based on angiog-

raphy findings. Only a few quantitative analyses on ICG-VA 

involved measurement of the f luorescence intensity in the 

process of time1,4,19,27). Tempolabile quantitative analysis en-

ables more accurate assessments of hemodynamics and can 

lead to a model for blood flow in body17,34). Some studies have 

strived to provide several model functions for blood f low in 

the brain3,9,22,24,35). However, determining blood flow in a clini-

cal setting is difficult because the signal for the vascular blood 

flow time profile is highly variable depending on the condi-

tions of patients, as described in other imaging modalities36). 

Thus, it is important to establish a vascular blood flow model 

that can be applied to various time profile signals for data to 

elucidate the kinetics of blood circulation in the brain and ob-

tain principle parameters that enable evaluation of biological 

phenomena. These parameters include the number, time (or 

location of the center), height, and growth and decay rates of 

the peaks17). These parameters provide objective information 

to diagnose the vascular blood flow of patients and identify the 

distinctions among the hemodynamic mechanisms15,20,21,28).

In this study, we demonstrated that cerebrovascular hemo-

dynamics can be presented as a mathematical model that is an 

exponential modified Gaussian (EMG) function. The numeri-

cal model was shown to be well fitted to ICG-VA tempolabile 

quantitative data. The model was constructed using a fitting 

algorithm with nonlinear regression. We predicted the prima-

ry parameters of curves (center of peaks, height of peaks, 

growth rate, and decay rate from the data set) of data com-

prised of points missed partly by the measurement limitation.

MATERIALS AND METHODS

The study was approved by IRB of Seoul National Universi-

ty Boramae Hospital (30-2020-097). We obtained the curve 

data from ICG-VA during cerebrovascular surgery in confor-

mity with our previous research33). We employed commercial-

ly available products for the ICG dye (Daiichi Sankyo, Tokyo, 

Japan) and surgical microscope (OPMI Pentero; Carl Zeiss 

Co., Oberkochen, Germany). The angiogram video was con-

verted to static images using the video player and capture 

freeware (GomPlayer v. 2.1.36; Gretech Corp., Seoul, Korea). 

Tempolabile quantitative analysis data were extracted from 

the static image stacks by the multi-measure plug-in of ImageJ 

(v. 1.42q; http://rsb.info.nih.gov/ij/; National Institutes of 

Health, Bethesda, MD, USA).

The vascular blood f low circulatory system included the 

heart, lung, brain, and extra body2). ICG was injected as an in-

travenous bolus into the central venous line and was observed 

using an ICG-VA technique at the cerebral arteries. The mea-

sured signals were composed of absorption and elimination 

phases, and the time and width of the peaks in the time do-

main projected the kinetic information on the blood flow. In-

travenous bolus injection formed an ideal pulse shape of the 

cerebrovascular hemodynamic curve between the absorption 

Fig. 1. Shapes of the intravenous bolus signal. Intravenous bolus injection may cause a pulse shape in the signal (a). however, the real measured 
cerebral hemodynamic curve may be changed to the asymmetry gaussian function (b) because a rapid injection would increase the indocyanine green 
(Icg) concentration in a short period. Nevertheless, the Icg diffusion at the plasma level would be relatively slow. In other words, duration of the 
elimination phase is longer than that of the absorption phase in the peak function form. 
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and elimination phases (Fig. 1A). However, the measured 

curve had the shape to an asymmetry peak function, as shown 

in Fig. 1B, because of the injection distribution and dispersion 

effect. The quantity of the injected ICG could have a Gaussian 

distribution in practice on account of the random noise vari-

ance. Thus, the ICG concentration in the blood could increase 

under the cumulative distribution function (CDF) in the ab-

sorption phase. 

After the bolus, the concentration was exponentially decayed 

by the dispersion effect14). Therefore, we assumed that the mea-

sured cerebrovascular hemodynamic curve (CHmeasure(t)) was 

represented as follow.

CHmeasure(t) = CDF(t) × exp(-t)    (1)

We chose the EMG model, which is one of the asymmetry 

peaks, as a candidate to fit on the curve. It has a similar math-

ematical express as Equation (1)11). The error function (erf) in 

the EMG could be transposed into CDF, Ø(t) with the follow-

ing relationship.

= +

ϕ

ϕ

( )

( ) ( ) exp

t e t

e dx

EMG t y z w

xt

o

= + 







= +

⋅

−∫

1
2

1
2 2

1
2

1

1
2

2

0π

t
t t

t

z t t t
w

w
t

0

2

0

0

0

0









 − −











= − −

( )

( ) ( )

rf

A

 (2)

EMG was compared and evaluated to identify a suitable 

model function for the measurement data. The data were cal-

culated by the Levenberg-Marquardt algorithm (nonlinear 

least-squares algorithm) using scientific graphing and data 

analysis software, Origin9 Pro (v. 9.0.0.; OriginLab Co., 

Northampton, MA, USA).

EMG model for the cerebrovascular hemodynamic 
curve

EMG has typically been used for both chromatographic 

distribution and peak analyses in a wide range of fields8,12,23). 

EMG is expressed by the convolution of one CDF Ø(t) and 

one exponential function (Equation [3]) :
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where A is the peak amplitude, t0 is the exponential relax-

Fig. 2. fitting results on the peak and whole areas of the indocyanine 
green videoangiography (Icg-Va) data curve. a : Standard shape of the 
quantitative Icg-Va clinical data. The number of peaks changed; 
however, the curve was mainly composed of peaks and a long tail. b : 
comparison of the fitting curves with peak functions at the peak area. 
exponential modified gaussian (eMg; black line) fitted better than other 
peak functions (extra lines) on the shape of the peak. c : To include the 
tail part, the linear bi-summation of the peak functions was needed. bi-
eMg presented the best fitting curve on the whole data area. 
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ation rate for decay, w is the variable related to the peak width 

and growth rate, and tC is the variable related to the center of 

peaks.

The CDF with the sigmoid (S-shaped) form increases from 

0 to 1. The parameter w is the growth steepness; thus, w 

means the growth rate degree. EMG is the convolution func-

tion. Meanwhile, CDF does not inf luence the elimination 

phase because the CDF value is only one in the elimination 

phase. In other words, CDF is dominant in the absorption 

phase, which is the growth part of the peak of the EMG curve. 

The exponential function is only related to the elimination 

phase, which is the decay part of the curve. 

The decay rate degree enables defining the decay constant 

of the exponential function, 
1
t0

, as shown in Fig. 2. Conse-
quently, we employ four primary parameters to determine the 

peaks in the EMG, which, in turn, determines the shape of the 

peaks, steepness of the CDF or growth rate of the peaks, w, 

decay constant of the peaks, 
1
t0

, and size and location of the 
peaks (height and center of peaks).

RESULTS

To evaluate the validity of the EMG model, the R-squared 

value was compared with other peak functions and a bi-sum-

mation of the peak functions using the fitting algorithm. The 

applied data had a general form of a single peak, which was 

one of the quantitative ICG-VA clinical data. The number of 

frames in the X-axis of all measured data was transformed 

into the time domain to verify the data time profile.

We chose five peak functions : Gaussian function (G(t)), 

which is not actually an asymmetric peak function; neverthe-

less, it is the simplest function among the peak functions; log-

normal function (L(t)) Gumbel distribution function (GB(t)); 

Maxwell-Boltzmann function (MB(t)); and EMG function 

(EMG(t)). Each function can be expressed as :
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where y0s are the offsets, A the amplitude of the peaks, w 

the width of the peaks, and tC denotes the center of peaks.

Comparison with other fitting functions
Fig. 2A shows the cerebrovascular hemodynamic data in the 

time domain. It is comprised of clinical data with a common 

form of a single peak in the quantitative ICG-VA with the 

time profile. Specifically, it consists of a peak and a long-range 

tail. We fitted the clinical data from the peak area (up to the 

half-maximum of the peak in the elimination phase) to the 

whole data area because a peak function could not cover the 

whole data. It indicated that the signals required two or more 

functions to fit the whole data. Furthermore, the tail part 

should be applied with the same function in the peak area be-

cause the circulation system could not be changed while the 

signal was measured. Therefore, a high possibility existed that 

the whole data curve of the single peak would be fitted by lin-

ear bi-summations of the peak functions. Fig. 2B presents the 

fitting results of the five peak functions. All linear bi-summa-

tion functions fitted as shown in Fig. 2C. To compare the re-

sults, we calculated the R-squared values as shown in Table 1. 

We excluded the result of the bi-Gaussian function because it 

Table 1. comparison of the R-squared values according to the fitting region (region of the peak and whole area)

Region of the peak R-squared Whole data R-squared

Gaussian function 0.9714 -

Lognormal function 0.9940 Bi-lognormal function 0.8325

Gumbel function 0.9887 Bi-MB function 0.9648

Maxwell-Boltzmann (MB) function 0.9350 Bi-gumbel function 0.9908

EMG function 0.9978 Bi-EMG function 0.9973

EMG : exponential modified Gaussian
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Fig. 3. fitting curves (grey line) for the measurement data (open circle) of various forms using the multi- exponential modified gaussian (eMg) model. 
a-h : Various shapes of the cerebral hemodynamic curves for vascular blood flow are observed. The curves are fitted by the multi-eMg function. The 
number of eMg functions required for effective fitting is one more than the number of peaks. The measured data are applied with a low-degree 
Savitzky-golay filter to remove the fluctuation of data and ease the derivation. each center of peaks defined by the point of the first derivative values is 
equal to zero at the local peaks. The center of peaks of the fitting curves (grey numbers) are substantially accorded with the ones (black numbers) of 
their measured data. 
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was too deviated to fit on the curve.

The clinical data provided the best fit to the EMG function 

on both the peak and whole data area (Table 1). This result 

demonstrated that the multi-EMG function was required for 

fitting on multiple peak curves. The same number of EMG 

functions was needed; the peak and tail parts required only 

one.

Multi-EMG modelling for ICG curve
The bi-EMG function was well suited to expressing the sin-

gle peak data with the time profile. We verified whether the 

multi-EMG function would fit on various forms of the signals. 

We collected several quantitative ICG-VA signals, which had a 

couple of peaks and a tail intact and varied depending on the 

status of the blood flow. Furthermore, we evaluated the multi-

EMG model as the universal fitting function for the cerebro-

vascular hemodynamic curve (Fig. 3). The signals were fitted 

to ter- or quad-EMG, specifically three or four respective lin-

ear summations of EMG. The R-squared values revealed that 

the multi-EMG functions fitted well with the various forms of 

data (average value, 0.9832).

In addition, we identified the center of peaks at the peak 

area of the fitting curve and measured data using the peak-

finding algorithm with the first derivative method. The first 

derivative values of the given function were equal to zero at 

the local peak point. The low degree Savitzky-Golay filter, one 

of the smoothing filters, was applied to the measured data 

while finding the center of peaks. The location of the center of 

peaks at the time axis in the fitting curve (grey numbers) was 

similar to that of the measured data (black numbers). There-

fore, we could distinguish the center of peaks in the clinical 

data from one in the multi-EMG function.

Fig. 4. Prediction of center of peaks on data (open circles) with missing parts. a-d : Some data points can be missed from saturation owing to the 
measuring equipment limitation. The fitting model (grey line; multi-eMg model) provides the estimated values of the parameter, center of peaks (grey 
numbers), and data. eMg : exponential modified gaussian.
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The partial data were sometimes missed, which may have 

been occurred when the intensity of the signal exceeded the 

measurement system limit. The fitting model restored the pa-

rameters of the particular missing data through the data 

trend. Fig. 4 shows that the multi-EMG model recovered the 

missing data and predicted center of peaks that could not be 

identified on the original measured data. To identify the pre-

dicted center of peaks, we used the same method with the fit-

ting functions of non-saturated data.

DISCUSSION

In the evaluation, the numerical model of the quantitative 

ICG-VA provided accurate information on cerebrovascular 

hemodynamics and enabled a comparison of the blood flow 

in various conditions by using the primary parameters. The 

multi-EMG function was the best numerical function for re-

f lecting cerebrovascular hemodynamics, which was proved 

using a nonlinear regression fitting algorithm. The number of 

EMG functions in multi-EMG was determined by the num-

ber of peaks in the clinical data. This is because the peak and 

tail were required for each component of the EMG function. 

For each peak, one component of the EMG function was 

dominant. 

Fig. 5A shows the two component EMG functions com-

posed of a single peak fitting function. The peak area of the 

fitting curve is predominantly influenced by the growth part 

of the first EMG. In terms of the logarithmic scale of the curve 

(Fig. 5B), the decay part of the peak area aligns with the expo-

nential line in the first EMG. As shown in these figures, the 

first EMG component is dominant in the peak area; the sec-

ond strongly influences the tail part. Therefore, we considered 

a relevant single EMG to analyse the properties of each peak.

An objective of curve fitting with nonlinear regression is to 

set a numerical model describing a complex biological system 

using equations and numerical parameters. The numerical 

models enable interpretation of the measured data as under-

standable systems and estimation of the parameters or trends 

of curves. Moreover, if data are missing from the “valid 

part”—which may be caused by the determination constraint 

in the measurement system—the model not only predicts the 

parameter, but it also restores the missing data to some ex-

tent16).

Thus, to evaluate the model’s effectiveness in data restora-

tion, we maintained the top of the main peak from 60% to 

100% in the real measured data based on the peak height  

(Fig. 6A and C). In the simulation, the intensity of the mea-

surement signals exceeded the observable maximum of the 

ICG-VA system, as shown in Fig. 6. We reconstructed the 

missing parts at each truncated main peak (Fig. 6B and D) by 

applying the multi-EMG model. In addition, we estimated the 

primary parameters (center of peaks, peak height, steepness of 

growth (w), and the decay constant (
1
t0

)) in the first EMG of 
the multi-EMG function that expressed the main peak. 

Fig. 6E presents the relative difference based on the parame-

Fig. 5. dominance of a single eMg function on each peak area. a : fitting curve (grey line) of the multi-eMg for the clinical data and each component 
eMg (black line and grey dashed line). b : The same curve in the logarithmic scale. The black dashed lines show the exponential line in the logarithmic 
scale. The growth and decay parts of the peak predominantly match the first eMg. Therefore, the single eMg, which is the first eMg in this case, is 
dominant at the peak area. The peak properties can be obtained by analysing the first eMg. eMg : exponential modified gaussian.
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Fig. 6. evaluation of multi-eMg model reconstruction. a and b : To check the model validity, the top of the main peak in the measured data was 
removed from 0% to 40% based on the peak height. c and d : Reconstructed data curve by the multi-eMg model. e : comparison with the relative error 

of the estimated four primary parameters : center of peaks, peak height, steepness of growth (w), and decay constant (
1
t0

). The smaller is the area of 
missing data, the more accurate is the prediction of the reconstructed parameters in all parameters. cOP : center of peak, eMg : exponential modified 
gaussian.
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ters of the original fitting function. The accuracy of the recon-

struction of all parameters is usually lower when the larger 

missing parts exist; however, the accuracy has a <30% margin 

of error if the peak remains greater than 70%. The decay con-

stant has a relatively lower accuracy than the growth steepness 

because the larger missing parts inf luence the second EMG 

located in the tail part. However, the decay constant values are 

reliable if there are small missing areas, making it a possible 

evaluation value for the properties of the elimination phase. 

There are other methods for assessment of hemodynamics 

using ICG-VA. Flow 800 (Carl Zess, Oberkochen, Germany) is 

a well-known software and there are several reports on its use 

in cerebrovascular surgery6,32). It is convenient for surgeons, 

without requiring any calculation by users. However, because 

the software can only calculate the delay and the slope (aver-

age intensity, AI/second) at a specific point of the intensity 

graph within the range arbitrarily determined by the clinician 

or researcher, there is a limit to obtain accurate quantitative 

values7). Our method provides the coefficient of fitting func-

tion based on nonlinear regression analysis, and it offers more 

objective evaluation indicators. Moreover, the commercial 

software is an integrated part of the operative microscope, 

compatible models were launched on 2011 and of considerable 

price (approximately 30 million Korean Won). Besides, it is 

impossible for analysis of data acquired in older model of mi-

croscope.

Considering the pros and cons of the commercial software 

and our methods, it might be said : commercial software is 

useful for intraoperative assessment for hemodynamics on 

site, whereas our methods for analysis for data in batch mode, 

especially for archived data to elucidate hemodynamic fea-

tures of series of cases in more objective way with better accu-

racy.

The above results showed that the multi-EMG model recon-

structed missing peak parameters with reliable prediction in 

the smaller missing area. The predicted values of the center of 

peaks in Fig. 6 are acceptable for the quantitative analysis of 

ICG-VA. 

CONCLUSION

Establishing a numerical model for analysing a biological 

system has several advantages25,26). First, a mathematical model 

enables visualisation and intuitive comprehension of biologi-

cal phenomena30). Biological phenomena usually occur as a 

result of combined reactions to a complex system. The nu-

merical model developed in this study simplifies a given phe-

nomenon into several equations and parameters. Through an 

analysis of these equations and parameters, the complex sys-

tem can then be understood. Second, the trend and response 

of a phenomenon can be predicted as presented by the restora-

tion of data in our series. Furthermore, the tempolabile quan-

titative analysis presents a time profile of vascular blood flow 

and enables a more accurate evaluation.

Based on the results of this study, the multi-EMG model 

can be used as a mathematical model for cerebrovascular he-

modynamics to understand vascular blood f low, which is 

quantitatively measured by ICG-VA during cerebrovascular 

surgery. The proposed multi-EMG model fitted well in vari-

ous conditions of vascular blood flow by nonlinear regression 

and reflected the parameters (such as center of peaks) of clini-

cal data. Furthermore, we proved that the multi-EMG model 

reconstructed a portion of missing data and predicted the pa-

rameters of these missing parts. Our numerical model can 

thus enhance the insight of cerebrovascular hemodynamics in 

various clinical conditions.
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