DOI QR코드

DOI QR Code

Numerical Model for Cerebrovascular Hemodynamics with Indocyanine Green Fluorescence Videoangiography

  • Hwayeong Cheon (Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center) ;
  • Young-Je Son (Department of Neurosurgery, Seoul National University Boramae Hospital) ;
  • Sung Bae Park (Department of Neurosurgery, Seoul National University Boramae Hospital) ;
  • Pyoung-Seop Shim (System Configuration Team, Korea Institute of Atmospheric Prediction Systems) ;
  • Joo-Hiuk Son (Department of Physics, University of Seoul) ;
  • Hee-Jin Yang (Department of Neurosurgery, Seoul National University Boramae Hospital)
  • Received : 2022.07.27
  • Accepted : 2022.09.22
  • Published : 2023.07.01

Abstract

Objective : The use of indocyanine green videoangiography (ICG-VA) to assess blood flow in the brain during cerebrovascular surgery has been increasing. Clinical studies on ICG-VA have predominantly focused on qualitative analysis. However, quantitative analysis numerical modelling for time profiling enables a more accurate evaluation of blood flow kinetics. In this study, we established a multiple exponential modified Gaussian (multi-EMG) model for quantitative ICG-VA to understand accurately the status of cerebral hemodynamics. Methods : We obtained clinical data of cerebral blood flow acquired the quantitative analysis ICG-VA during cerebrovascular surgery. Varied asymmetric peak functions were compared to find the most matching function form with clinical data by using a nonlinear regression algorithm. To verify the result of the nonlinear regression, the mode function was applied to various types of data. Results : The proposed multi-EMG model is well fitted to the clinical data. Because the primary parameters-growth and decay rates, and peak center and heights-of the model are characteristics of model function, they provide accurate reference values for assessing cerebral hemodynamics in various conditions. In addition, the primary parameters can be estimated on the curves with partially missed data. The accuracy of the model estimation was verified by a repeated curve fitting method using manipulation of missing data. Conclusion : The multi-EMG model can possibly serve as a universal model for cerebral hemodynamics in a comparison with other asymmetric peak functions. According to the results, the model can be helpful for clinical research assessment of cerebrovascular hemodynamics in a clinical setting.

Keywords

Acknowledgement

This work was partly supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2021R1F1A1056527). This work was partly supported by 2022 University of Seoul Research Grant. This work was partly supported by a clinical research fund of Seoul National University Boramae Hospital.

References

  1. Awano T, Sakatani K, Yokose N, Kondo Y, Igarashi T, Hoshino T, et al. : Intraoperative EC-IC bypass blood flow assessment with indocyanine green angiography in moyamoya and non-moyamoya ischemic stroke. World Neurosurg 73 : 668-674, 2010 https://doi.org/10.1016/j.wneu.2010.03.027
  2. Bagher-Ebadian H, Nejad-Davarani SP, Paudyal R, Nagaraga TN, Brown S, Knight R, et al. : Construction of a model-based high resolution arterial input function (AIF) using a standard radiological AIF and the Levenberg-Marquardt algorithm. Proc Intl Soc Mag Reson Med 19 : 3902, 2011
  3. Calamante F, Thomas DL, Pell GS, Wiersma J, Turner R : Measuring cerebral blood flow using magnetic resonance imaging techniques. J Cereb Blood Flow Metab 19 : 701-735, 1999 https://doi.org/10.1097/00004647-199907000-00001
  4. Chen SF, Kato Y, Oda J, Kumar A, Watabe T, Imizu S, et al. : The application of intraoperative near-infrared indocyanine green videoangiography and analysis of fluorescence intensity in cerebrovascular surgery. Surg Neurol Int 2 : 42, 2011
  5. Dashti R, Laakso A, Niemela M, Porras M, Hernesniemi J : Microscope-integrated near-infrared indocyanine green videoangiography during surgery of intracranial aneurysms: the helsinki experience. Surg Neurol 71 : 543-550; discussion 550, 2009 https://doi.org/10.1016/j.surneu.2009.01.027
  6. de Oliveira JG, Beck J, Seifert V, Teixeira MJ, Raabe A : Assessment of flow in perforating arteries during intracranial aneurysm surgery using intraoperative near-infrared indocyanine green videoangiography. Neurosurgery 62(6 Suppl 3) : 1300-1310, 2008 https://doi.org/10.1227/01.NEU.0000333795.21468.D4
  7. Ferroli P, Acerbi F, Tringali G, Albanese E, Broggi M, Franzini A, et al. : Venous sacrifice in neurosurgery: new insights from venous indocyanine green videoangiography. J Neurosurg 115 : 18-23, 2011 https://doi.org/10.3171/2011.3.JNS10620
  8. Foley JP, Dorsey JG : A review of the exponentially modified gaussian (EMG) function: evaluation and subsequent calculation of universal data. J Chromatogr Sci 22 : 40-46, 1984 https://doi.org/10.1093/chromsci/22.1.40
  9. Foster SG, Embree PM, O'Brien WR : Flow velocity profile via time-domain correlation: error analysis and computer simulation. IEEE Trans Ultrason Ferroelectr Freq Control 37 : 164-175, 1990 https://doi.org/10.1109/58.55306
  10. Gelisken F, Inhoffen W, Schneider U, Stroman GA, Kreissig I : Indocyanine green videoangiography of occult choroidal neovascularization: a comparison of scanning laser ophthalmoscope with high-resolution digital fundus camera. Retina 18 : 37-43, 1998 https://doi.org/10.1097/00006982-199818010-00007
  11. Golubev A : Exponentially modified gaussian (EMG) relevance to distributions related to cell proliferation and differentiation. J Theor Biol 262 : 257-266, 2010 https://doi.org/10.1016/j.jtbi.2009.10.005
  12. Grushka E : Characterization of exponentially modified gaussian peaks in chromatography. Anal Chem 44 : 1733-1738, 1972 https://doi.org/10.1021/ac60319a011
  13. Hanggi D, Etminan N, Steiger HJ : The impact of microscope-integrated intraoperative near-infrared indocyanine green videoangiography on surgery of arteriovenous malformations and dural arteriovenous fistulae. Neurosurgery 67 : 1094-1103; discussion 1103-1104, 2010 https://doi.org/10.1227/NEU.0b013e3181eb5049
  14. Iida H, Kanno I, Miura S, Murakami M, Takahashi K, Uemura K : Error analysis of a quantitative cerebral blood flow measurement using H2(15) O autoradiography and positron emission tomography, with respect to the dispersion of the input function. J Cereb Blood Flow Metab 6 : 536-545, 1986 https://doi.org/10.1038/jcbfm.1986.99
  15. Jerosch-Herold M, Swingen C, Seethamraju RT : Myocardial blood flow quantification with MRI by model-independent deconvolution. Med Phys 29 : 886-897, 2002 https://doi.org/10.1118/1.1473135
  16. Kalambet Y, Kozmin Y, Mikhailova K, Nagaev I, Tikhonov P : Reconstruction of chromatographic peaks using the exponentially modified gaussian function. J Chemom 25 : 352-356, 2011 https://doi.org/10.1002/cem.1343
  17. Kety SS, Schmidt CF : The nitrous oxide method for the quantitative determination of cerebral blood flow in man: theory, procedure and normal values. J Clin Invest 27 : 476-483, 1948 https://doi.org/10.1172/JCI101994
  18. Kim K, Isu T, Chiba Y, Morimoto D, Ohtsubo S, Kusano M, et al. : The usefulness of icg video angiography in the surgical treatment of superior cluneal nerve entrapment neuropathy: technical note. J Neurosurg Spine 19 : 624-628, 2013
  19. Kobayashi S, Ishikawa T, Tanabe J, Moroi J, Suzuki A : Quantitative cerebral perfusion assessment using microscope-integrated analysis of intraoperative indocyanine green fluorescence angiography versus positron emission tomography in superficial temporal artery to middle cerebral artery anastomosis. Surg Neurol Int 5 : 135, 2014
  20. Koeppe RA, Holden JE, Ip WR : Performance comparison of parameter estimation techniques for the quantitation of local cerebral blood flow by dynamic positron computed tomography. J Cereb Blood Flow Metab 5 : 224-234, 1985 https://doi.org/10.1038/jcbfm.1985.29
  21. Ku DN : Blood flow in arteries. Ann Rev Fluid Mech 29 : 399-434, 1997 https://doi.org/10.1146/annurev.fluid.29.1.399
  22. Lee JJ, Powers WJ, Faulkner CB, Boyle PJ, Derdeyn CP : The kety-schmidt technique for quantitative perfusion and oxygen metabolism measurements in the mr imaging environment. AJNR Am J Neuroradiol 34 : E100-E102, 2013 https://doi.org/10.3174/ajnr.A3270
  23. Li X, McGuffin VL : Theoretical evaluation of methods for extracting retention factors and kinetic rate constants in liquid chromatography. J Chromatogr A 1203 : 67-80, 2008 https://doi.org/10.1016/j.chroma.2008.07.020
  24. Lin W, Celik A, Derdeyn C, An H, Lee Y, Videen T, et al. : Quantitative measurements of cerebral blood flow in patients with unilateral carotid artery occlusion: a pet and mr study. J Magn Reson Imaging 14 : 659-667, 2001 https://doi.org/10.1002/jmri.10021
  25. Motulsky H, Christopoulos A : Fitting models to biological data using linear and nonlinear regression : a practical guide to curve fitting. Oxford : Oxford University Press, 2004
  26. Motulsky HJ, Ransnas LA : Fitting curves to data using nonlinear regression: a practical and nonmathematical review. FASEB J 1 : 365-374, 1987 https://doi.org/10.1096/fasebj.1.5.3315805
  27. Oda J, Kato Y, Chen SF, Sodhiya P, Watabe T, Imizu S, et al. : Intraoperative near-infrared indocyanine green-videoangiography (ICG-VA) and graphic analysis of fluorescence intensity in cerebral aneurysm surgery. J Clin Neurosci 18 : 1097-1100, 2011 https://doi.org/10.1016/j.jocn.2010.12.045
  28. Olufsen MS, Nadim A, Lipsitz LA : Dynamics of cerebral blood flow regulation explained using a lumped parameter model. Am J Physiol Regul Integr Comp Physiol 282 : R611-R622, 2002 https://doi.org/10.1152/ajpregu.00285.2001
  29. Raabe A, Beck J, Gerlach R, Zimmermann M, Seifert V : Near-infrared indocyanine green video angiography: a new method for intraoperative assessment of vascular flow. Neurosurgery 52 : 132-139; discussion 139, 2003 https://doi.org/10.1227/00006123-200301000-00017
  30. Sbalzarini IF : Modeling and simulation of biological systems from image data. Bioessays 35 : 482-490, 2013 https://doi.org/10.1002/bies.201200051
  31. Schuette AJ, Cawley CM, Barrow DL : Indocyanine green videoangiography in the management of dural arteriovenous fistulae. Neurosurgery 67 : 658-662; discussion 662, 2010 https://doi.org/10.1227/01.NEU.0000374721.84406.7F
  32. Shah KJ, Cohen-Gadol AA : The application of flow 800 ICG videoangiography color maps for neurovascular surgery and intraoperative decision making. World Neurosurg 122 : e186-e197, 2019 https://doi.org/10.1016/j.wneu.2018.09.195
  33. Son YJ, Kim JE, Park SB, Lee SH, Chung YS, Yang HJ : Quantitative analysis of intraoperative indocyanine green video angiography in aneurysm surgery. J Cerebrovasc Endovasc Neurosurg 15 : 76-84, 2013 https://doi.org/10.7461/jcen.2013.15.2.76
  34. van der Geest RJ, de Roos A, van der Wall EE, Reiber JH : Quantitative analysis of cardiovascular mr images. Int J Card Imaging 13 : 247-258, 1997 https://doi.org/10.1023/A:1005869509149
  35. Wintermark M, Maeder P, Thiran JP, Schnyder P, Meuli R : Quantitative assessment of regional cerebral blood flows by perfusion CT studies at low injection rates: a critical review of the underlying theoretical models. Eur Radiol 11 : 1220-1230, 2001 https://doi.org/10.1007/s003300000707
  36. Wintermark M, Reichhart M, Thiran JP, Maeder P, Chalaron M, Schnyder P, et al. : Prognostic accuracy of cerebral blood flow measurement by perfusion computed tomography, at the time of emergency room admission, in acute stroke patients. Ann Neurol 51 : 417-432, 2002 https://doi.org/10.1002/ana.10136