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Abstract – For the optimal design of electromagnetic device involving uncertainties in design 
variables, this paper proposes a new reliability-based optimal design algorithm for multiple constraints 
problems. Through optimizing the nominal objective function and maximizing the minimum 
reliability, a set of global optimal reliable solutions representing different reliability levels are obtained 
by the multi-objective particle swarm optimization algorithm. Applying the sensitivity-assisted Monte 
Carlo simulation method, the numerical efficiency of optimization procedure is guaranteed. The 
proposed reliability-based algorithm supplying multi-reliable solutions is investigated through 
applications to analytic examples and the optimal design of two electromagnetic problems. 
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1. Introduction 
 
In order to cope with uncertain design variables (UDVs), 

numerous endeavors have been made in the electrical 
engineering to develop robust optimal design algorithms 
through minimizing performance variations, adopting the 
gradient index method and worst-case scenario approxi-
mation [1, 2]. When a system includes critical constraints 
with UDV, however, it is more imperative to keep the 
probability of failure event for constraints less than a 
predefined value or ensure the reliability with respect to 
constraints to a certain confidence level. 

Recently, researches on the reliability analysis [3] and 
reliability-based optimal design (RBOD) have been set out 
in electrical engineering [4] based on algorithms developed 
in mechanical engineering [5, 6]. These researches mainly 
pursue a constraint-reliable optimal design by means of 
reliability analysis such as reliability index approach (RIA) 
[5] and performance measure approach (PMA) [6].  

As shown in Fig. 1, the deterministic/classical optimi-
zation finds the best performance solution disregarding 
uncertainty; the robust optimization seeks a solution giving 
minimum variation of performance within the uncertainty 
set. The RBOD, on the other hand, tries to select the best 
performance one only among solutions having higher level 
of reliability than a predefined value. 

Most conventional RBODs in all published works have 
treated reliability as a probabilistic constraint [4-6]. In 

detail, a constraint involving UDVs is firstly transformed 
into a reliability condition that an optimal solution should 
have higher reliability than a predefined value, and then an 
optimal design is found through optimization [7]. Although 
this method finds a reliable solution corresponding to the 
target reliability, it provides information only for the 
obtained optimal solution not for other solutions. However, 
if the reliability is treated as an additional independent 
objective function to be maximized, a set of Pareto-optimal 
solutions will be obtained in objective and constraint 
functions space, from which a designer may realize how 
the reliable solution changes with different level of 
reliability, and decide a suitable solution according to a 
particular application. 

This paper, to seek for multiple reliable solutions, 
proposes a novel RBOD algorithm which treats probabilistic 
constraints as additional independent objective function 
to be maximuzed. In the algorithm, the reliability analysis 
is achieved by using sensitivity-assisted Monte Carlo 
simulation (SA-MCS) proposed in our previous research 
[8], and multi-guider and cross-searching multi-objective 
particle swarm optimization (MGC-PSO) is employed to 
get global Pareto-optimal design. 
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Fig. 1. Illustration of different optimal solutions for 
minimization problem 
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2. Reliability Analysis Using Sensitivity Assisted 

Monte Carlo Simulation Method (SA-MCS)

In this paper, all design variables, xÎRn, are assumed 
to be uncertain ones and follow independent Gaussian 
distribution. At a specific design, x0, its reliability for a 
constraint, g(x) ≤ 0, is defined, by using Monte Carlo 
simulation (MCS), as the probability of satisfying the 
constraints as UDVs change around x0 as follows [8, 9]:
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where N is the number of test perturbed designs, and the 
uncertainty set U(x0) is defined as:

{ }0 0 0( ) nU R k k= Î - £ £ +x ξ x σ ξ x σ (2)

where σ is a vector of standard deviations and k is constant 
corresponding to required confidence level, i.e, k=1.96
when the confidence level is 95%.

In SA-MCS method, to save the computing time 
required in (1), the constraint function value at a perturbed 
design is approximated as follows: 

0 0 0 0( ) ( ) ( ) ( ), ( )g g g U@ +Ñ × - Îξ x x ξ x ξ x (3)

If the constraint involves the finite element method 
(FEM) to be analyzed, the gradient vector can be obtained 
through design sensitivity analysis [10]. The computational 
cost required in reliability analysis for a constraint at a 
specific design is only one more additional FEM call to 
calculate the gradient vector.

3. Reliability-Based Optimal Design Algorithms 

A typical optimization problem subject to m constraints 
is generally formulated as follows:

Minimize ( )

subject to ( ) 0, 1, ,i

f

g i m£ =

x

x L
. (4)

In the deterministic optimization, an advanced global 
optimizer may be adopted to yield an optimal design 
with the best performance. This method does not pay 
regard to the uncertainties in design variables, thereby the 
optimal solution, in general, locates on or very close to the 
constraint boundary, as the design (A) shown in Fig. 2.

3.1 Conventional RBOD

The conventional RBOD introduces reliability concept

to ensure that an optimal solution remains inside the 
feasible region even with perturbation, and is formulated as 
follows:

( ) ,

Minimize ( )

subject to ( ) 0 , 1, , .i t i

f

R g R i m£ ³ =

x

x L
(5)

where Rt,i is the target reliability for the i-th constraint.
Most conventional RBOD algorithms, as shown in Fig. 

2, start with finding the deterministic solution (design A). 
Then the solution is moved back to the feasible region by 
finding a reliable optimum (design B or design C) to 
guarantee the target reliability. It is obvious, in this method, 
that only one solution is available corresponding to the 
target reliability. For a different level of reliability, this 
method needs to be run independently.

In order to find a global optimal solution, in this paper, 
(5) is solved by using particle swarm optimization (PSO).

3.2 Proposed RBOD-Multi-objective approach

The conventional RBODs seek for an optimal solution, 
which guarantees the target reliability as well as good
performance. In the RBODs, furthermore, a trade-off 
between performance and reliability level is inevitable. 
From this viewpoint, the constraints in (4) can be treated 
as an additional independent objective function to be 
maximized. Therefore, the optimization problem (4) is 
formulated in a multi-objective way to get Pareto-optimal 
solutions as follows:
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where Rmin is the minimum reliability among all constraints.
In the solution of (6), the MGC-MOPSO (a multi-

objective version of PSO which utilizes multi-guiders and 
cross-searching strategy) is adopted [11]. We can get global 
Pareto-optimal solutions, which ranges from the design 
with the best performance and the lowest level of reliability 
to one with the worst performance and the highest level of 
reliability. Therefore, the designer can easily see how the 
reliable solutions change with different reliability levels.  
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Fig. 2. Description of the reliability-based design 
optimization
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Fig. 3. Flowchart of the proposed RBOD algorithm

Due to adoption of the SA-MCS method, for a specified 
design, the computational cost required in performance and 
reliability analyses in (6), is just (1+m) times of FEM calls. 

The numerical implementation of the proposed RBOD 
algorithm is shown in Fig. 3. The proposed RBOD algorithm
is compared, in Table 1, with conventional ones from the 
viewpoint of reliability calculation and optimization 
methods.

4. Numerical Validations

During optimization process, the parameters (particles, 
maximum iteration) in the PSO and the MGC-MOPSO 
algorithms are set as (30, 200) and (50, 300), respectively.
For reliability analysis, the confidence level is 0.95 and 
number of test designs is one million.

4.1 Analytic example

To investigate performances of different RBOD
algorithms, an analytic problem is selected as:
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where design space is 0 £ x1, x2 £ 10 (s = x1+x2-5 and t = x1-
x2-12). The deterministic optimal solution is x = (3.151308, 
2.39507)T [13]. For reliability analysis, uncertainty is 
σ=0.2.

For each case of Rt = 0.80, 0.90, and 0.95, the 
optimization problem carried out 20 independent runs, 
among them, the best one is selected as the optimal 

solution. Optimization results of the conventional RBOD 
are shown in Table 2. It can be seen that the RBOD finds 
almost similar solution with the deterministic/classical 
optimization when the target reliability is small. As the 
target reliability increases, the reliable optimal solution will 
be moved further away from the constraint boundaries. It is 
proved by values of the constraint functions, for example, 
the constraint value of g1(x) at Rt =0.95 as -0.38978, is 
much smaller than the one obtained at Rt=0.80 as -0.18924. 
As in Fig. 4 (b) and (c), most of the constraint values at 

s=0.3 are smaller than those at s=0.2. From last three 
columns, it is also validated that the reliable optimal 
designs obtained from the RBOD also satisfy the required 
reliability.

Table 1. Comparison of reliability analysis and different RBDO algorithms

Methods Treating reliability Reliability calculation Optimization method Optimal solution Ref
RIA & PMA Sequential quadratic programming Single local optimal solution [4], [6]Conventional

RBOD
constraint

PMA Genetic algorithm Single global optimal solution [12]
Proposed RBOD Objective function SA-MCS MGC-MOPSO Pareto-optimal solutions -
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Fig. 4. Optimization results of proposed RBOD algorithm
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Fig. 4 shows the optimization results of the proposed 
RBOD algorithm for multiple reliable solutions together 
with the RBOD results in Table 2. Since the objective 
function is multimodal, there are several gaps on the Pareto 
front as shown in Fig. 4. Every gap represents a change 
towards an inferior local optimum to satisfy the reliability 
requirement.

In addition, optimal solutions of the conventional RBOD 
under specified reliabilities such as design A, B, and C are 
close to some candidates on the Pareto front. In this sense, 
the conventional RBOD may be considered as a special 
case of the proposed multi-objective RBOD algorithm. Just 
from the number of solutions, by only one independent run, 
efficiency of the multi-objective RBOD is equivalent to 
several times of the conventional RBOD by taking the 
reliability condition as constraint. In other words, the 
proposed algorithm is more robust and useful than the 
conventional RBOD.

4.2 Electromagnetic problem I - superconducting 
magnetic energy storage system

In the 3-parameter superconducting magnetic energy 
storage system [2], combining energy requirement (E0=180 
MJ) and minimal magnetic stray field (Bs), objective 
function to be minimized and performance constraints
guaranteeing superconductivity are formulated as:

222
2 2

2
1

( ) 1
( ) , ( )

22

refs
s

n ref i

E EB
f B B i

B E
=

-
= + = å

x
x (8a)

,( ) 6.4 54.0 0, 1, 2i i m ig J B i= + × - £ =x (8b)

where Bn=3 mT, B(i) is the magnetic flux density of the ith 
test point, and Bm,i is the maximum magnetic flux density 
of the ith coil. Fixed values of inner coil are [R1, H1, D2]

T = 
[1.32, 2.14, 0.59]T m [2].

There may be manufacturing tolerance in the geometric 
variables. In addition, the sources supplied by a current 
controller will keep in a certain range when compensating 
a perturbation so that they may deviate from the nominal 
values. Therefore, geometric variables x=[R2, H2/2, D2]

T

are treated as uncertain ones while current densities J are 
considered as uncertain parameters as listed in Table 3. 

Table 4 compares optimization results of the RBOD 
under different target reliabilities with the deterministic/
classical optimum. It is found that the classical optimum 
has very lower reliability, and it has higher possibility, in 

this case 46.18%, to violate constraint g1(x)£0. As the 
target reliability increases, the optimal reliable design gives 
a little worse objective value such as Rt = 0.7 and 0.8; 
however, it locates further inside the feasible region with 
bigger margins to both constraints.  

Fig. 5 shows the optimization result of the proposed 
reliability-based method. It is found that the Pareto-front 
includes the optimums obtained by the RBOD. In the 
region of interest (ROI), it is clear that design A (one of the 
extreme solutions) is very similar to the classical optimal 
design. The Pareto front also provides important information
to make a balance between the objective function and 
minimum reliability according to different requirements. If 
the constraints are extremely critical, design C with bigger 
reliability may be selected although it has very poor 
performance. Design B in the ROI may be considered as a 
better solution in the general-purpose optimization since it 
makes a good trade-off between performance and reliability.
Fig. 6 shows constraint values of each Pareto optimum, 

Table 2. Optimization results of conventional RBOD algorithm

Optimal design Optimal performance Reliability
Rt

x1 x2 f(x) g1(x) g2(x) g3(x) R(g1(x)£0) R(g2(x)£0) R(g3(x)£0)
0.80 A 3.151308 2.39507 3.55020 -0.18924 -0.06347 -1.34664 0.87825 0.90676 1.00000
0.90 B 3.166105 2.41243 3.62059 -0.20914 -0.06516 -1.33075 0.90042 0.91162 1.00000
0.95 C 3.151308 2.79895 3.95343 -0.38978 -0.16066 -1.14349 0.99026 1.00000 1.00000

Table 3. Uncertainties in design variables & parameters

Variable R2 [m] H2/2 [m] D2 [m] J1 [MA/m2] J2 [MA/m2]
N(μ,σ) N(0,0.01) N(0,0.01) N(0,0.01) N(16.78,0.23) N(-15.51,0.23)
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which reveals that a design with smaller margins for 
constraints will result in a lower reliability in Fig. 5 such as 
design A. It also illustrates that constraint g1(x) is more 
sensitive to uncertainty than constraint g2(x) for three-
parameter problem.

4.3 Electromagnetic problem II – Loney’s correcting 
System

As shown in Fig. 7, the Loney’s correcting system 
includes a main coil and two correcting coils. The 
corresponding design problem is to determine the position 
and size of correcting coils so that it can generate a 
uniform magnetic flux density in the region of interest
along the axis of a main solenoid [14, 15]. The homogeneity
of magnetic field in the ROI is described as UB,

max min 610 ppm
avg

B B
UB

B

-
= × (9)

where Bmin, Bmax, and Bavg are minimum, maximum, and 
average values of magnetic flux density in the ROI with 
size of 5mm×25mm. The design variable vector is x=[Rc, 

Lc, d, Jc]
T and values are set in Table 4, where Jc is the 

current density assigned to correcting coil. The fixed 
values are [Rm, Lm, Dm, Dc, Jm] = [55mm, 1400mm, 2mm, 
2mm, 5A/mm2]. 

For a specified application, besides improving the 
magnetic field uniformity, the mean value of magnetic field 
also needs to be guaranteed. Therefore, in this paper, the 
multi-objective reliability-based optimal design problem is 
constructed as follows:

( )
1

2 0

Maximize ( )

Maximize ( ) UB

avgf B

f R UB

=

= £

x

x
(10)

where UB0 is the non-uniformity of main coil.
Similar as the foregoing examples. the MO-RBOD can  

supply a set of candidates, from the Pareto-front, one 
optimal design with R=1.00 is selected to compare with 
other designs as shown in Table 5. The optimal of RBOD is 
obtained under the target reliability of 0.95. It can be seen 
that even the Bavg improvements of RBOD and MO-RBOD 
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Fig. 7. Structure of Loney’s correcting system

Table 4. Optimal results of classical optimization and reliability-based design optimization a

Rt R2 H2/2 D2 f(x) Bs
2 [T2] g1(x) b R(g1(x)£0)

Classical 1.8127 1.4963 0.2458 6.226´10-5 7.522´10-11 -0.1191 0.5382
0.60 1.8176 1.4214 0.2567 6.535´10-3 5.304´10-9 -0.4762 0.6838
0.70 1.8121 1.4885 0.2519 1.358´10-2 6.511´10-8 -0.5918 0.7222
0.80 1.8064 1.7317 0.2392 3.602´10-1 2.976´10-6 -0.8841 0.8099

a The optimal design is selected among 20 independent runs.
b All designs have enough margins for constraint g2(x)£0.

Table 5. Design variables and uncertainty

Rc [mm] Lc [mm] d [mm] Jc [A/mm2]

Min. 65 20 200 0

Max. 75 400 700 5

Uncertainty σ 0.5 0.5 5 0.05

Table 6. Result comparison

Main coil RBOD MO-RBOD
Rc [mm] - 74.602411 74.646662
Lc [mm] - 87.428079 83.704947
d [mm] - 698.502256 689.361146

Jc [A/mm2] - 4.991035 4.876507
Bavg[Gauss] 125.2620 125.64069 125.4920
UB[ppm] 6.5433 1.8170 1.7969
Reliability - 1.000 1.000

Fig. 8. Magnetic field distribution in ROI of MO-RBOD
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are not too much compared with the main coil, their 
uniformities are improved obviously. Meanwhile, the 
reliability is guaranteed against uncertainty, which can be 
seen from Fig. 8.

5. Conclusion

A new reliability-based optimal design algorithm 
supplying a set of reliable solutions is suggested. The 
algorithm treats the uncertainty related constraints as 
additional independent objective functions to be maximized.
It is validated that the Pareto-optimal designs from the 
proposed algorithm gives much more assistance to a 
designer in establishing the trade-off between the 
performance and reliability. The proposed algorithm can be 
combined with any reliability calculation methods such as 
reliability index approach and sampling-based methods.
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