• Title/Summary/Keyword: Computer tomography

Search Result 423, Processing Time 0.027 seconds

Influence of threshold value of computed tomography on the accuracy of 3-dimensional medical model (전산화단층 촬영상의 임계치가 3차원 의학모델 정확도에 미치는 영향에 대한 연구)

  • Lee Byeong-Do;Lee Wan
    • Imaging Science in Dentistry
    • /
    • v.32 no.1
    • /
    • pp.27-33
    • /
    • 2002
  • Purpose: To evaluate the influence of threshold value of computed tomography on the accuracy of rapid prototyping (RP) medical model Material and Methods : CT datas of a human dry skull were transferred from CT scanner via compact disk to a personal computer (PC). 3-dimensional image reconstruction on PC by V-works/sup TM/ 3.0 (CyberMed. Inc.) software and RP models fabrication were followed. 2-RP models were produced by threshold value of 500 and 800 selected in surface rendering process. Linear measurements between arbitrary 12 anatomical landmarks on dry skull, 3-D image model, and 2-RP models were done and compared. Thus, the accuracy of 500 RP and 800RP models was respectively evaluated. Results: There was mean difference (% difference) in absolute value of 2.27 mm (2.73%) between linear measurements of dry skull and 500 RP model. There was mean difference (% difference) in absolute value of 1.94 mm (2.52%) between linear measurements of dry skull and 800 RP model. Conclusion: Slight difference of threshold value in rendering process of 3-D modelling made a influence on the accuracy of RP medical model.

  • PDF

Feasibility of Computed Tomography Colonography as a Diagnostic Procedure in Colon Cancer Screening in India

  • Manjunath, Kanabagatte Nanjundappa;Gopalakrishna, Prabhu Karkala;Siddalingaswamy, Puttappa Chandrappa
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.13
    • /
    • pp.5111-5116
    • /
    • 2014
  • Computed Tomography Colonography (CTC) is a medical imaging technology used in identifying polyps and colon cancer masses in the large intestine. The technique has evolved a great deal since its invention and has become a routine diagnostic procedure in Western countries due to its non invasiveness and ease of use. The objective of our study was to explore the possibility of CTC application in Indian hospitals. This paper gives an overview of the procedure and its commercial viability. The explanation begins with the domain aspects from gastroenterologist perspective, the new way of thinking in polyp classification, the technical components of CTC procedure, and how engineering solutions have helped clinicians in solving the complexities involved in colon diagnosis. The colon cancer statistics in India and the results of single institution study we carried out with retrospective data is explained. By considering the increasing number of patients developing colon malignancies, the practicality of CTC in Indian hospitals is discussed. This paper does not reveal any technical aspects (algorithms) of engineering solutions implemented in CTC.

X-Ray Tomography Based Simulation Feasibility Analysis of Nuclear Fuel Pellets (핵연료 펠릿의 X-선 단층촬영 기반 시뮬레이션 타당성 해석)

  • Kim, Jae-Joon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.4
    • /
    • pp.324-329
    • /
    • 2010
  • Fuel rods using in nuclear power plants consist of uranium dioxide pellets enclosed in zirconium alloy(zircaloy) tubes. It is vitally important for the pellet surface to remain free from pits, cracks and chipping defects after it is loaded into the tubes to prevent local hot spots during reactor operation. This paper investigates the feasibility study for detecting surface flaws of pellets contained within nuclear fuel rod through X-ray tomography simulation. Reconstructed images used by parallel and fan-beam filtered back projection method were presented and confirmed the accessibility between simulation data and MPS(missing pellet surface) image data.

Heterogeneous Computation on Mobile Processor for Real-time Signal Processing and Visualization of Optical Coherence Tomography Images

  • Aum, Jaehong;Kim, Ji-hyun;Dong, Sunghee;Jeong, Jichai
    • Current Optics and Photonics
    • /
    • v.2 no.5
    • /
    • pp.453-459
    • /
    • 2018
  • We have developed a high-performance signal-processing and image-rendering heterogeneous computation system for optical coherence tomography (OCT) on mobile processor. In this paper, we reveal it by demonstrating real-time OCT image processing using a Snapdragon 800 mobile processor, with the introduction of a heterogeneous image visualization architecture (HIVA) to accelerate the signal-processing and image-visualization procedures. HIVA has been designed to maximize the computational performances of a mobile processor by using a native language compiler, which targets mobile processor, to directly access mobile-processor computing resources and the open computing language (OpenCL) for heterogeneous computation. The developed mobile image processing platform requires only 25 ms to produce an OCT image from $512{\times}1024$ OCT data. This is 617 times faster than the naïve approach without HIVA, which requires more than 15 s. The developed platform can produce 40 OCT images per second, to facilitate real-time mobile OCT image visualization. We believe this study would facilitate the development of portable diagnostic image visualization with medical imaging modality, which requires computationally expensive procedures, using a mobile processor.

Common-path OCT Image Using Partial Reflecting Probe (부분 반사 프로브를 사용한 공통경로 OCT 이미지 획득)

  • Park, Jae-Seok;Jeong, Myung-Yung;Kim, Chang-Seok;Han, Jae-Ho;Kang, Jin-U.
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.2
    • /
    • pp.103-107
    • /
    • 2008
  • Unlike conventional optical coherence tomography systems based on Michelson interferometer, we suggest a common-path OCT system, which does not include a separated configuration between reference signal and sample signal. We optimize the refractive index of partial reflecting probe to induce a balanced intensity of the reference signal. At the end of the probe, convex lens was optimally fabricated to get images of biological samples in the position of focus. Using the experimental system, we could get 2-D images of various biological samples.

Accuracy of Pedicle Screw Insertion Using Fluoroscopy-Based Navigation-Assisted Surgery : Computed Tomography Postoperative Assessment in 96 Consecutive Patients

  • Lee, Keong Duk;Lyo, In Uk;Kang, Byeong Seong;Sim, Hong Bo;Kwon, Soon Chan;Park, Eun Suk
    • Journal of Korean Neurosurgical Society
    • /
    • v.56 no.1
    • /
    • pp.16-20
    • /
    • 2014
  • Objective : Two-dimensional fluoroscopy-based computerized navigation for the placement of pedicle screws offers the advantage of using stored patient-specific imaging data in providing real-time guidance during screw placement. The study aimed to describe the accuracy and reliability of a fluoroscopy-based navigation system for pedicle screw insertion. Methods : A total of 477 pedicle screws were inserted in the lower back of 96 consecutive patients between October 2007 and June 2012 using fluoroscopy-based computer-assisted surgery. The accuracy of screw placement was evaluated using a sophisticated computed tomography protocol. Results : Of the 477 pedicle screws, 461 (96.7%) were judged to be inserted correctly. Frank screw misplacement [16 screws (3.3%)] was observed in 15 patients. Of these, 8 were classified as minimally misplaced (${\leq}2mm$); 3, as moderately misplaced (2.1-4 mm); and 5, as severely misplaced (>4 mm). No complications, including nerve root injury, cerebrospinal fluid leakage, or internal organ injury, were observed in any of the patients. Conclusion : The accuracy of pedicle screw placement using a fluoroscopy-based computer navigation system was observed to be superior to that obtained with conventional techniques.

Development of Computer Aided 3D Model From Computed Tomography Images and its Finite Element Analysis for Lumbar Interbody Fusion with Instrumentation

  • Deoghare, Ashish;Padole, Pramod
    • International Journal of CAD/CAM
    • /
    • v.9 no.1
    • /
    • pp.121-128
    • /
    • 2010
  • The purpose of this study is to clarify the mechanical behavior of human lumbar vertebrae (L3/L4) with and without fusion bone under physiological axial compression. The author has developed the program code to build the patient specific three-dimensional geometric model from the computed tomography (CT) images. The developed three-dimensional model provides the necessary information to the physicians and surgeons to visually interact with the model and if needed, plan the way of surgery in advance. The processed data of the model is versatile and compatible with the commercial computer aided design (CAD), finite element analysis (FEA) software and rapid prototyping technology. The actual physical model is manufactured using rapid prototyping technique to confirm the executable competence of the processed data from the developed program code. The patient specific model of L3/L4 vertebrae is analyzed under compressive loading condition by the FEA approach. By varying the spacer position and fusion bone with and without pedicle instrumentation, simulations were carried out to find the increasing axial stiffness so as to ensure the success of fusion technique. The finding was helpful in positioning the fusion bone graft and to predict the mechanical stress and deformation of body organ indicating the critical section.

Hybrid model-based and deep learning-based metal artifact reduction method in dental cone-beam computed tomography

  • Jin Hur;Yeong-Gil Shin;Ho Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.2854-2863
    • /
    • 2023
  • Objective: To present a hybrid approach that incorporates a constrained beam-hardening estimator (CBHE) and deep learning (DL)-based post-refinement for metal artifact reduction in dental cone-beam computed tomography (CBCT). Methods: Constrained beam-hardening estimator (CBHE) is derived from a polychromatic X-ray attenuation model with respect to X-ray transmission length, which calculates associated parameters numerically. Deep-learning-based post-refinement with an artifact disentanglement network (ADN) is performed to mitigate the remaining dark shading regions around a metal. Artifact disentanglement network (ADN) supports an unsupervised learning approach, in which no paired CBCT images are required. The network consists of an encoder that separates artifacts and content and a decoder for the content. Additionally, ADN with data normalization replaces metal regions with values from bone or soft tissue regions. Finally, the metal regions obtained from the CBHE are blended into reconstructed images. The proposed approach is systematically assessed using a dental phantom with two types of metal objects for qualitative and quantitative comparisons. Results: The proposed hybrid scheme provides improved image quality in areas surrounding the metal while preserving native structures. Conclusion: This study may significantly improve the detection of areas of interest in many dentomaxillofacial applications.

Performance Evaluation of a Convolutional Neural Network Models for Diagnosing Malignant Pleural Effusion Using Positron Emission Tomography (양전자 단층 촬영 영상을 사용한 악성 흉수 진단을 위한 컨볼루션 신경망 기반 딥러닝 모델의 성능 평가)

  • Yeji Kim;Jong-Min Lee;Seung-Jin Yoo;Bo-Guen Kim;Hyun Lee;Yun Young Choi;Soo Jin Lee
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2024.01a
    • /
    • pp.17-18
    • /
    • 2024
  • 악성 흉수의 진단은 세포학적 검사로 암세포를 확인하는 것이 필수적이며 진단율은 50~80%로 나타난다. 양성자 단층 촬영은 비침습적으로 암 병기를 평가하는 유용한 방법이다. 하지만 암이 아닌 다른 원인으로 인한 포도당 대사로 인하여 양전자 단층 촬영만으로 악성 흉수를 진단하는 데 어려움이 있다. 악성 흉수 자동 진단 모델은 암세포를 진단하는데 있어서 보조적인 역할이 가능하다. 이에 따라 본 연구는 컨볼루션 신경망 기반의 딥러닝 모델을 개발하여 악성 흉수 진단 성능을 확인하고 진단의 보조적 목적으로써 딥러닝의 사용 가능성을 확인하고자 하였다. 결과적으로 모델 전반적으로 accuracy 0.7~0.86의 높은 성능을 보였다. 본 연구의 결과를 통해 실제 의료 환경에서 악성 흉수를 진단하는데 딥러닝 모델이 보조적인 역할을 할 수 있을 것으로 기대된다.

  • PDF

Full mouth rehabilitation with Implant-Guided Surgery and Fixed prosthesis (Implant-Guided Surgery를 이용한 고정성 임플란트 보철물의 전악 수복 증례)

  • Kim, Seong-Mo;Park, Jin-Hong;Ryu, Jae-Jun;Shin, Sang Wan;Lee, Jeong-Yol
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.56 no.2
    • /
    • pp.126-133
    • /
    • 2018
  • The development of cone beam computerized tomography (CBCT) allows three-dimensional analysis of the patient's anatomy. The surgical guide is a combination of CBCT, computer-aided design/computer-aided manufacturing (CAD/CAM) and implant diagnostics software, which allows well planned prostheses design and ideal implant placement. Guided surgery minimizes possible anatomical damage and allows for more reproducible treatment planning. In this case, the operation time was shortened by using a surgical guide for multiple implants placement in a fully edentulous patient. Immediate loading were performed more easily using preliminary preparation of provisional prosthesis. The patient was satisfied with improved esthetics and chewing function.