DOI QR코드

DOI QR Code

Heterogeneous Computation on Mobile Processor for Real-time Signal Processing and Visualization of Optical Coherence Tomography Images

  • Aum, Jaehong (Department of Computer and Radio Communication Engineering, Korea University) ;
  • Kim, Ji-hyun (Department Brain and Cognitive Engineering, Korea University) ;
  • Dong, Sunghee (Department Brain and Cognitive Engineering, Korea University) ;
  • Jeong, Jichai (Department Brain and Cognitive Engineering, Korea University)
  • Received : 2018.06.28
  • Accepted : 2018.09.04
  • Published : 2018.10.25

Abstract

We have developed a high-performance signal-processing and image-rendering heterogeneous computation system for optical coherence tomography (OCT) on mobile processor. In this paper, we reveal it by demonstrating real-time OCT image processing using a Snapdragon 800 mobile processor, with the introduction of a heterogeneous image visualization architecture (HIVA) to accelerate the signal-processing and image-visualization procedures. HIVA has been designed to maximize the computational performances of a mobile processor by using a native language compiler, which targets mobile processor, to directly access mobile-processor computing resources and the open computing language (OpenCL) for heterogeneous computation. The developed mobile image processing platform requires only 25 ms to produce an OCT image from $512{\times}1024$ OCT data. This is 617 times faster than the naïve approach without HIVA, which requires more than 15 s. The developed platform can produce 40 OCT images per second, to facilitate real-time mobile OCT image visualization. We believe this study would facilitate the development of portable diagnostic image visualization with medical imaging modality, which requires computationally expensive procedures, using a mobile processor.

Keywords

References

  1. E. Gibson, M. Young, M. V. Sarunic, and M. F. Beg, "Optic nerve head registration via hemispherical surface and volume registration," IEEE Trans. Biomed. Eng. 57, 2592-2595 (2010). https://doi.org/10.1109/TBME.2010.2060337
  2. Y.-C. Ahn, Y.-G. Chae, S. S. Hwang, B.-K. Chun, M. H. Jung, S. J. Nam, H.-Y. Lee, J. M. Chung, C. Oak, and E.-K. Park, "In vivo optical coherence tomography imaging of the mesothelium using developed window models," J. Opt. Soc. Korea 19, 69-73 (2015). https://doi.org/10.3807/JOSK.2015.19.1.069
  3. R. Kafieh, H. Rabbani, F. Hajizadeh, and M. Ommani, "An accurate multimodal 3-D vessel segmentation method based on brightness variations on OCT layers and curvelet domain fundus image analysis," IEEE Trans. Biomed. Eng. 60, 2815-2823 (2013). https://doi.org/10.1109/TBME.2013.2263844
  4. P. Li, X. Yin, L. Shi, A. Liu, S. Rugonyi, and R. K. Wang, "Measurement of strain and strain rate in embryonic chick heart in vivo using spectral domain optical coherence tomography," IEEE Trans. Biomed. Eng. 58, 2333-2338 (2011). https://doi.org/10.1109/TBME.2011.2153851
  5. N. H. Cho, U. Jung, H. I. Kwon, H. Jeong, and J. Kim, "Development of SD-OCT for imaging the in vivo human tympanic membrane," J. Opt. Soc. Korea 15, 74-77 (2011). https://doi.org/10.3807/JOSK.2011.15.1.074
  6. G. Liu, J. Zhang, L. Yu, T. Xie, and Z. Chen, "Real-time polarization-sensitive optical coherence tomography data processing with parallel computing," Appl. Opt. 48, 6365-6370 (2009). https://doi.org/10.1364/AO.48.006365
  7. T. E. Ustun, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, "Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array," Rev. Sci. Instrum. 79, 114301 (2008). https://doi.org/10.1063/1.3005996
  8. J.-H. Kim, J. Aum, J.-H. Han, and J. Jeong, "Optimization of compute unified device architecture for real-time ultrahigh-resolution optical coherence tomography," Opt. Commun. 334, 308-313 (2015). https://doi.org/10.1016/j.optcom.2014.08.067
  9. N. H. Cho, U. Jung, S. Kim, W. Jung, J. Oh, H. W. Kang, and J. Kim, "High speed SD-OCT system using GPU accelerated mode for in vivo human eye imaging," J. Opt. Soc. Korea 17, 68-72 (2013). https://doi.org/10.3807/JOSK.2013.17.1.068
  10. Y. Watanabe and T. Itagaki, "Real-time display on Fourier domain optical coherence tomography system using a graphics processing unit," J. Biomed. Opt. 14, 060506-060506-3 (2009). https://doi.org/10.1117/1.3275463
  11. Y. Huang, X. Liu, and J. U. Kang, "Real-time 3D and 4D Fourier domain Doppler optical coherence tomography based on dual graphics processing units," Biomed. Opt. Express 3, 2162-2174 (2012). https://doi.org/10.1364/BOE.3.002162
  12. W. Jung, J. Kim, M. Jeon, E. J. Chaney, C. N. Stewart, and S. A. Boppart, "Handheld optical coherence tomography scanner for primary care diagnostics," IEEE Trans. Biomed. Eng. 58, 741-744 (2011). https://doi.org/10.1109/TBME.2010.2096816
  13. S. Dong, K. Guo, P. Nanda, R. Shiradkar, and G. Zheng, "FPscope: a field-portable high-resolution microscope using a cellphone lens," Biomed. Opt. Express 5, 3305-3310 (2014). https://doi.org/10.1364/BOE.5.003305
  14. T. Li, M. Duan, K. Li, G. Yu, and Z. Ruan, "Bedside monitoring of patients with shock using a portable spatially-resolved near-infrared spectroscopy," Biomed. Opt. Express 6, 3431-3436 (2015). https://doi.org/10.1364/BOE.6.003431
  15. K. Daoudi, P. J. van den Berg, O. Rabot, A. Kohl, S. Tisserand, P. Brands, and W. Steenbergen, "Handheld probe integrating laser diode and ultrasound transducer array for ultrasound/photoacoustic dual modality imaging," Opt. Express 22, 26365-26374 (2014). https://doi.org/10.1364/OE.22.026365
  16. D. D. Mehta, N. T. Nazir, R. G. Trohman, and A. S. Volgman, "Single-lead portable ECG devices: Perceptions and clinical accuracy compared to conventional cardiac monitoring," J. Electrocardiol. 48, 710-716 (2015). https://doi.org/10.1016/j.jelectrocard.2015.04.017
  17. X. Xu, L. Yu, and Z. Chen, "Effect of erythrocyte aggregation on hematocrit measurement using spectral-domain optical coherence tomography," IEEE Trans. Biomed. Eng. 55, 2753-2758 (2008). https://doi.org/10.1109/TBME.2008.2002134
  18. S. Lee, E. Lebed, M. V. Sarunic, and M. F. Beg, "Exact surface registration of retinal surfaces from 3-D optical coherence tomography images," IEEE Trans. Biomed. Eng. 62, 609-617 (2015). https://doi.org/10.1109/TBME.2014.2361778
  19. F. Atry, S. Frye, T. J. Richner, S. K. Brodnick, A. Soehartono, J. Williams, and R. Pashaie, "Monitoring cerebral hemodynamics following optogenetic stimulation via optical coherence tomography," IEEE Trans. Biomed. Eng. 62, 766-773 (2015). https://doi.org/10.1109/TBME.2014.2364816
  20. Smartphone OS Market Share, 2017 Q1, https://www.idc.com/promo/smartphone-market-share/os (2017).
  21. G. Chen, X. Shen, B. Wu, and D. Li, "Optimizing data placement on GPU memory: A portable approach," IEEE Trans. Comput. 99, 1-1 (2016).
  22. R. Melo, G. Falcao, and J. P. Barreto, "Real-time HD image distortion correction in heterogeneous parallel computing systems using efficient memory access patterns," J. Real Time Image Process. 11, 83-91 (2016). https://doi.org/10.1007/s11554-012-0304-3