Acknowledgement
이 논문은 2023년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구임 (No.2020-0-01373, 인공지능대학원지원(한양대학교)).
References
- Zamboni MM, da Silva CT, Baretta R, et al. "Important prognostic factors for survival in patients with malignant pleural effusion" BMC Pulm Med, Vol. 15, pp.29, 2015.
- Arnold DT and Maskell N, "Imaging for malignant pleural effusions-still no routine role of positron emission tomography" J Thoracic Dis. Vol 11(3), pp.1079-1081, 2019 https://doi.org/10.21037/jtd.2019.02.99
- Sadaghiani MS, Rowe ST, Sheikhbahaei S, "Applications of artificial intelligence in oncologic 18F-FDG PET/CT imaging: a systematic review" Ann Transl Med, Vol 9(9), pp.823, 2021.
- Ronneberger, O., Fischer, P., & Brox, T. "U-net: Convolutional networks for biomedical image segmentation" Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015, Volume 9351, pp. 234-241. 2015