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I. INTRODUCTION

Optical coherence tomography (OCT) is an interferometric 

imaging modality that is frequently used for clinical and 

preclinical applications in dermatology, ophthalmology, 

and otolaryngology [1-5]. It can produce high-resolution 

tomograms at the few-micrometers scale with noninvasive 

scanning. However, OCT requires complex signal processing 

that demands intensive computing to produce a tomographic 

image, which is potentially a bottleneck to increasing the 

imaging rate of OCT, and limits its utility when computing 

resources are limited. Consequently, many solutions have 

been proposed for processing OCT data in real time using 

high-performance computing tools, such as a multi-CPU 

connected system [6], field-programmable gate arrays (FPGAs) 

[7], and compute unified device architecture (CUDA) -assisted 

high-performance graphics processing units (GPUs) [8-11].

In recent times, various portable medical diagnostic 

devices have been proposed [12-16]. Such devices can be 

utilized in numerous situations, such as emergency onsite 

cases, home monitoring of medical status, and providing 

healthcare systems for developing countries. Developing a 

portable OCT device for such purposes would also be 

beneficial. It can be applied in tracking the progress of 

glaucoma, diabetic macular edema, and other ophthalmic or 

dermatologic diseases, for instance [12, 17-19]. However, 

we expect there will be several shortcomings of portable 

OCT devices versus a conventional OCT system, such as 

degraded resolution, low signal-to-noise ratio, low frame 

rate, etc. One of our major concerns is low frame rate. 

Conventional high-performance processing devices are 

relatively bulky and consume much power, which limits 
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their usage for portable devices. On the other hand, a 

processing device that can be installed in a mobile device 

for its smaller size and low power consumption shows low 

computational performance. This may demand an excessively 

long time to obtain OCT image visualizations. The critical 

hurdles here are developing a mobile image processing 

platform for OCT and utilizing it for practical applications. 

Currently, it is difficult to implement OCT hardware using 

mobile devices, except for the optics. In the near future, 

we may expect to implement OCT hardware including 

OCT-control and image-processing parts on mobile devices. 

Before implementing OCT hardware on mobile devices 

aside from the optics part, we would like to identify the 

limit steps in image processing that cause the process to 

take a long time.

A system-on-a-chip (SoC) is an integrated circuit that 

contains all components in a single chip. A SoC typically 

contains a memory block, microprocessor, and data I/O 

interface. Owing to their low power consumption and 

miniaturize size, SoCs are commonly used in mobile 

electronic devices. Further, high-performance SoCs called 

mobile processor have been developed for smartphones, to 

process multimedia content. The microprocessor of a mobile 

chip consists of multiple processing units, such as a central 

processing unit (CPU), digital signal processor (DSP), and 

GPU to process multimedia content, as shown in Fig. 1. 

The computational performance of each processing unit is 

not significant, but we believe utilizing multiple processing 

units in a parallel computation scheme would greatly 

increase performance. To the best of our knowledge, an 

OCT image processing that solely runs on a mobile 

processor has never been investigated. Our primary interest 

is to develop a fully optimized scheme for processing 

raw OCT image data and visualizing those images in real 

time on a mobile device. Furthermore, we investigate the 

possibility of developing a real-time OCT image platform 

using a mobile processor.

In this paper, we present a mobile image-processing 

platform developed for mobile processor with a fully 

optimized processing scheme that processes OCT data and 

renders images. The image-processing platform uses a 

Snapdragon 800 mobile processor installed in a Samsung 

SHV-E330S smartphone. It was developed as an Android 

application for compatibility with the Android OS that 

dominates the smartphone market (about 85% market 

share in 2017 [20]). Without optimization for high-speed 

computation, the mobile devices required more than 15 s 

to produce an OCT image from 512 × 1024 OCT raw data, 

which is too slow to be applied to real-time visualization. 

Consequently, to increase its computation speed we 

introduced an accelerated processing system, which we call 

HIVA. Initially we employed a native development kit 

(NDK), which facilitates direct access to the computing 

resources of the device by compiling the native language 

into machine-language code targeting the mobile processor. 

With the NDK adopted, the time to produce an OCT 

image was reduced to 1,160 ms, which represents a 13.3- 

fold increase in computing performance. Subsequently, for 

further acceleration of the devices we adopted the open 

computing language (OpenCL), which facilitates hetero-

geneous computation using multiple processing units of a 

mobile processor. By using precomputed data to avoid 

unnecessary recomputation, full utilization of multiple cores 

of the GPU, and maximization of data access throughput 

with consideration of coalesced memory access, the OpenCL 

processing scheme was optimized. With the implementation 

of our proposed mobile platform, the time to produce an 

OCT image was further reduced to 25 ms, an additional 

46.4-fold acceleration. This allows an imaging rate of 40 

frames per second, as achieved by real-time visualization. 

Compared to the initial version, which took 15 s to produce 

an OCT image, our proposed method shows 617-fold 

acceleration.

 

II. METHODS

We introduce HIVA for the purpose of maximizing the 

computational performance of a mobile processor, which 

runs on the Android OS, when it processes raw OCT- 

signal data and renders the produced tomographic images 

as an Android application for an OCT imaging system. 

HIVA accelerates the processing speed by skipping 

unnecessary, heavily delaying procedures while executing 

functions in runtime, with an alternative method for 

executing functions with a native-language-coded system. 

It exploits multiple processing units of a mobile processor 

with high-performance parallel computation to minimize 

the time consumed for the OCT signal processing tasks, 

which demand heavy computational overhead.

FIG. 1. Architecture of a Snapdragon 800 mobile processor. 

The mobile processor consists of multiple processing units, 

data I/O interface, geometric location-tracking system, and a 

shared memory block.
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2.1. Overview of High-performance Computation on 

Android Applications

Android applications are developed using Java, an 

interpreted language that executes in a virtual machine. It 

does not allow direct access to device resources. These 

features facilitate program compatibility and stability, which 

are critical for Android applications running on various 

devices. However, algorithms written in Java execute more 

slowly than algorithms written in native languages such as 

C/C++, which execute their instructions on the processor 

directly, as described in Fig. 2. The performance gap 

between an interpreted language and a native language 

becomes severe when it comes to computationally intensive 

work. To overcome the performance issues associated with 

Java, a native language compiler that produces machine 

code that runs on mobile processor is needed. Furthermore, 

many C/C++ libraries and APIs that enable high-performance 

computation on a device exploiting multiple processing units, 

such as open multiprocessing (OpenMP), open graphics 

library (OpenGL), and OpenCL, can be adopted.

OpenMP facilitates multithreaded computation with a 

simple modification of existing code. This multithreaded 

computation accelerates computing speed by utilizing 

multiple CPU cores concurrently. With OpenMP, acceleration 

of twofold or threefold can generally be expected. However, 

computing performance is limited when only a CPU is used. 

OpenGL and OpenCL allow parallel computation involving 

a GPU, which is a high-performance parallel-computing- 

optimized processing unit. With the aid of GPUs, a huge 

acceleration in OCT data-processing speed can be expected, 

as the OCT data-processing task is highly amenable to 

parallel computation. OpenGL was originally developed to 

process graphics tasks, while OpenCL was developed for 

application to parallel computing across heterogeneous 

platforms consisting of CPU, GPU, DSP, etc., to perform 

general tasks rather than graphics tasks. Unlike OpenMP, 

adopting OpenGL or OpenCL is complex; however, the 

adoption promises much higher computational performance.

2.2. Heterogeneous Computation Scheme for Concurrent 

Utilization of Multiple Processing Units from a 

Mobile Processor

To develop HIVA, we used the following development 

tools: Android Studio 1.4, Android SDK 5.0.1, Android 

NDK 11.0.0, Gradle 2.8, OpenGLes 2.0, OpenCL 1.1, and 

Java 1.7. Android Studio provides an integrated development 

environment, Gradle is a build tool for Android applications, 

and OpenGLes is a version of OpenGL that is targeted at 

mobile devices. We developed the main structure of the 

application, including the user interface and data I/O system, 

in Java. However, the sections dealing with intensive 

computing tasks, such as OCT signal processing and image 

rendering, were written in C/C++ with the aid of the NDK. 

NDK is a set of compilers that compiles native-language 

source code into machine code, targeting various types of 

mobile processing devices. With the NDK, we can compile 

C/C++ code into machine code that can run directly on the 

processor of a mobile chip. However, the C/C++ -written 

and -compiled codes cannot be called directly, unless a 

Java method calls them, since an Android application 

should be written in Java. For the purpose of calling the 

machine code with a Java method, we defined in Java the 

native methods associated with the image-rendering and 

OCT-signal-processing tasks, as shown in Fig. 3. The native 

methods were incomplete methods, without implementation 

code. We wrote the implementation of the methods as 

FIG. 2. Illustration of the steps from source codes, written in 

native language and interpreted language respectively, to be 

executed on a user machine. Gray boxes indicate the steps 

performed before runtime. A native-language-written program 

needs fewer steps to be executed in runtime.

FIG. 3. Illustration of the relationship between the Java-coded 

methods and C/C++ -coded functions associated with NDK 

and JNI.



Current Optics and Photonics, Vol. 2, No. 5, October 2018456

C/C++ functions that are then compiled into machine code. 

The separate definition and implementation for each 

method are then linked through the Java native interface 

(JNI). When the native Java methods are called, JNI calls 

the corresponding natively coded functions and passes 

arguments between them. In this manner, we can execute 

C/C++ machine code by calling a Java method in an 

Android application.

For those parts of programs that are not specifically to 

be executed on a single-core CPU, we adopt OpenGL and 

OpenCL over OpenMP to exploit the computing power of 

the GPU contained in a mobile processor. To initialize 

OpenGL to render OCT images, we allocate a two- 

dimensional (2D) buffer for each OCT image. In addition 

to writing basic GPU rendering tasks via shader code, we 

wrote modules for adjusting the contrast and brightness 

levels of the image manually, to maximize the visibility of 

the sample obtained from an OCT image. In contrast to 

OpenGL, OpenCL has a relatively complex initialization 

process. First, we select the processor we wish to use with 

the OpenCL API, which in our case is the GPU. Next, we 

allocate GPU buffers to save and process OCT data. 

OpenCL defines functions called kernel functions, to run on 

GPUs. However, prior to launching these kernel functions 

it is necessary to compile their associated code into the 

machine code of the GPU, using the OpenCL compiler. 

OCT-signal-processing tasks are written as kernel functions 

and compiled into machine code.

Figure 4 illustrates the schematic for our real-time mobile- 

device OCT system. First, we load OCT raw data from 

the Java side, and call the native method to process OCT 

data from the C/C++ side. When the method is called for 

the first time, OpenGL and OpenCL are initialized prior to 

signal processing and image rendering. To produce OCT 

images from OCT raw data, we use k-space resampling 

with linear interpolation, removal of DC signal, and IFFT, 

as we did in a previous study, in which CUDA was used 

to develop a real-time OCT system [8]. Prior to launching 

the kernel functions from OpenCL, the data must be 

transferred to the OpenCL device buffer, which is the GPU 

buffer in our case. While launching the kernel functions, 

OCT signal processing is performed using the GPU. In 

this process we create two-dimensional multiple threads, 

which are dedicated one-to-one to the same number of 

each OCT image’s pixels, to process each pixel’s data in 

parallel using OpenCL, as shown in Fig. 5. In this manner 

we can maximally utilize hundreds of processing cores, 

keeping a minimal number of cores idling. To avoid 

unnecessary repeated computation, we use precomputed 

information about the OCT signal, such as the DC spectrum 

and interpolation position indices. The dataset of the 

information was organized and saved in one-dimensional 

buffers in serial order, to satisfy the coalesced memory- 

access condition when we access the dataset [21, 22]. The 

processed data from the GPU computation are then 

transferred to the vertex buffer, which holds the OCT 

image for rendering on a display, using OpenGL. The 

image rendering via OpenGL is performed asynchronously, 

regardless of the signal processing task.

III. RESULTS

We used a Samsung SHV-E330S smartphone to verify 

the efficacy of our system. This model smartphone has a 

Qualcomm Snapdragon 800 mobile processor, which 

comprises a 2.26 GHz four-core CPU and a GPU containing 

FIG. 4. Schematic of the proposed OCT signal processing and image rendering, fully optimized for high-speed computation on mobile 

processor.

FIG. 5. One-to-one matching relation between two-dimen-

sional multiple threads and two-dimensional-image pixel data.
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128 arithmetic logic units (ALUs). 2 GB of LPDDR3 RAM 

with 800 MHz memory frequency is installed, which is 

shared by the CPU, GPU, and other processing units. The 

OS version used was Android 5.0.1, and the applications 

were built targeting this same Android OS version. We 

subsequently measured the processing time to produce an 

OCT image from raw OCT data with our proposed system. 

Identical OCT-signal-processing systems were also developed 

with different methods, and the processing times of those 

systems measured, to compare computational speeds. The 

sample OCT data used were 512 × 1024 2D data, obtained 

by scanning an African clawed frog (Xenopus laevis) with 

a fiber-based spectral-domain OCT (SD-OCT) [9]. The 

original bit depth of the data was 12 bits in the form of 

unsigned integers, and then we converted it into 32-bit 

floating numbers for numerical stability while processing 

the data. The size of the raw OCT datafile for a single 

OCT image was 2 MB.

Table 1 shows the processing times required to produce 

the OCT images from raw OCT data under the various 

processing systems. For this test, we preloaded the data in 

memory and fetched it every time for a new OCT image. 

The produced images were displayed on the 1080 × 1920- 

resolution supported AMOLED display installed on the 

smartphone. First, the Java-coded system required almost 

15 s to produce an OCT image. With the help of the NDK, 

a C/C++ -coded system was developed that took 1160 ms, 

approximately 13 times as fast as the Java system. Further, 

when OpenCL was adopted for our proposed system, 

processing took only 25 ms, which is a 617-fold increase 

in speed compared to the Java-coded system. This result 

proves that our system is capable of producing 40 OCT 

images per second, to realize real-time imaging. The OCT 

images produced with our proposed system are presented 

in Fig. 6.

Accelerating the computing speed with OpenCL using 

GPU computation is relatively complicated. OpenMP, 

another tool for accelerating computing speed, is easier to 

apply. For comparison, we applied OpenMP to our system 

and subsequently measured the processing time of the 

system. With the application, the processing speed increased 

approximately fourfold, taking 258 ms to produce an OCT 

image by utilizing multiple cores of the CPU, compared to 

the single-core case that took 1160 ms. Adopting OpenMP 

is simpler than adopting OpenCL, resulting in improved 

computational performance. We consider applying OpenMP 

instead of OpenCL with GPU computation, when the GPU 

is fully dedicated to other processing tasks, or the system 

does not require heavy computation.

In Table 2 we present the computation time for each 

step of producing an OCT image, to investigate the 

performance gain we achieved in each step by applying our 

heterogenous computation system on a mobile processor. 

The most significant performance gain was observed in the 

IFFT step, which has a complexity of O(n log(n)), while the 

other steps are O(n), where n is the data size. Compared 

to the single-core case, the GPU case showed about 

180-fold increase in computing speed. On the other hand, 

the GPU case required data-transfer steps between host and 

device before GPU computation, which was unnecessary 

for the CPU-only case. Unlike desktop GPUs, a mobile 

chip’s GPU does not possess its own physical memory, 

which is often referred to as device memory, but it shares 

a unified physical memory with the CPU. However, it is 

still necessary to transfer data between host and device for 

GPU computation, because the host and device are not 

physically separated, but virtually divided. The data-transfer 

step from host to device took about 1.7 ms, only 6.7% of 

the total processing time of 25.1 ms. We also measured 

the processing time using a desktop GPU Nvidia GTX680 

TABLE 1. Comparison of the speed at which an OCT image is produced, with processing systems under different conditions

Type of system Java coded system C/C++ coded system HIVA

Library used - - OpenMP OpenCL

Processor (number of utilized ALUs) CPU (1 core) CPU (1 core) CPU (4 cores) GPU (128 cores)

Processing time 15,423 ms 1160 ms 258 ms 25 ms

Relative speed 1 13.30 59.78 616.92

FIG. 6. Our proposed technique produced OCT sample images taken from the (a) eye and (b) brain regions of an African clawed frog 

(Xenopus laevis). These images were rendered on a display panel from SHV-E330S and captured by a capturing application.
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for the same processing steps, using CUDA. The estimated 

total processing time using the desktop GPU was 4.67 ms, 

which is about 5 times as fast as HIVA.

IV. DISCUSSION

In the case of a desktop GPU, the data-transfer step 

took about 1.56 ms, taking a significant amount of the 

total processing time (33.4%). In fact, the data-transfer 

throughput of the desktop GPU was 5.82 GB/s, while the 

mobile processor’s was 4.51 GB/s, showing little difference. 

For a desktop GPU, it is critical to minimize data-transfer 

time, which required several optimization techniques to be 

introduced, such as using page-locked memory with direct- 

memory-access units (DMA), asynchronous data streaming, 

etc. However, it was not a critical issue for the mobile 

processor, taking only 6.7% of total processing time in our 

case, without employing such methods.

We have tested our system with the raw OCT data 

preloaded into the memory. For real applications, raw data 

should be transferred from an OCT hardware device to the 

memory. However, it may not be a critical concern, since 

there are some high-bandwidth interfaces for real-time data 

transfer. For instance, SATA III, USB 3.0, and USB 2.0 

support 768, 625, and 60 MB/s, respectively. Since our 

raw-datafile size for a single OCT image was 2 MB (768 

kB before conversion to 32-bit floating variable), 80 frames 

of OCT data can be theoretically transferred per second 

even using just USB 2.0, which would be enough for our 

system.

We have demonstrated a significant acceleration in OCT 

image production on a mobile processor. However, we 

believe further improvement of the system is possible. 

There exists latency when we launch each OpenCL kernel 

function for GPU computation. Generally, the latency is 

much higher than the latency observed when launching 

common C/C++ -coded functions. We also observed the 

high latency by estimating the elapsed time for launching a 

simple OpenCL kernel function that performs element-wise 

addition in the GPU; it took about 4.9 ms. Since most of 

the steps took between 5 and 7 ms, the latency can be 

considered a critical bottleneck of the system. We expect 

that further improvement of the processing speed can be 

realized by integrating the multiple kernel functions into a 

single kernel function that is carefully designed concerning 

synchronization of multiple threads. We leave this for our 

future work, including the development of a real-time- 

imaging, fully portable OCT device.

V. CONCLUSION

In this paper we developed a high-performance signal- 

processing and image-rendering heterogeneous computation 

system for optical coherence tomography (OCT) on mobile 

processor, with the introduction of HIVA. Over the past 

decade, various high-performance processing units have been 

adopted to facilitate the development of real-time OCT 

systems. However, to the best of our knowledge this is the 

first system to employ a mobile processor to process OCT 

data in real time. The mobile platform was developed as 

an Android application running on a smartphone (Samsung 

SHV-E330S) with a Snapdragon 800 mobile processor. The 

initial OCT-data-processing scheme without HIVA required 

approximately 15 s to produce a 512 × 1024 OCT image 

from raw OCT data. NDK was adopted to reduce the 

processing time to 1160 ms with direct access to the 

computing resources of the mobile processor. Furthermore, 

we performed heterogeneous computation using OpenCL 

along with full optimization of the processing scheme, 

focusing on maximum utilization of the mobile processor’s 

processing resources. This resulted in further reduction of 

the processing time to 25 ms. The processing-time reduction 

allows us to realize real-time systems able to process 40 

OCT images per second. Our developed technique exhibited 

a 617-fold increase in computation speed, compared to the 

15 s required by the unoptimized system. This proves that 

it is possible to develop real-time OCT image visualization 

using a single mobile processor, if it has a fully optimized 

processing system that utilizes heterogeneous computation.

TABLE 2. Comparison of the processing time for each step to produce an OCT image, with and without a multicore parallel processing 

scheme

Type

Mobile processor

(Snapdragon 800)

Desktop GPU

(Nvidia GTX680)

CPU (1 core) CPU (4 cores) GPU (128 cores) GPU (1536 cores)

Data transfer (host to device) - - 1.7 ms 1.56 ms

DC elimination 34.8 ms 14.1 ms 5.2 ms 0.12 ms

K-space resampling 119.3 ms 32.3 ms 6.1 ms 0.57 ms

IFFT 993.7 ms 205.9 ms 5.5 ms 0.17 ms

Copying produced image to pixel buffer 12.2 ms 5.6 ms 6.6 ms 0.46 ms

Total processing time 1160.0 ms 257.9 ms 25.1 ms 4.67 ms
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