
Current Optics and Photonics

Vol. 2, No. 5, October 2018, pp. 453-459

- 453 -

I. INTRODUCTION

Optical coherence tomography (OCT) is an interferometric

imaging modality that is frequently used for clinical and

preclinical applications in dermatology, ophthalmology,

and otolaryngology [1-5]. It can produce high-resolution

tomograms at the few-micrometers scale with noninvasive

scanning. However, OCT requires complex signal processing

that demands intensive computing to produce a tomographic

image, which is potentially a bottleneck to increasing the

imaging rate of OCT, and limits its utility when computing

resources are limited. Consequently, many solutions have

been proposed for processing OCT data in real time using

high-performance computing tools, such as a multi-CPU

connected system [6], field-programmable gate arrays (FPGAs)

[7], and compute unified device architecture (CUDA) -assisted

high-performance graphics processing units (GPUs) [8-11].

In recent times, various portable medical diagnostic

devices have been proposed [12-16]. Such devices can be

utilized in numerous situations, such as emergency onsite

cases, home monitoring of medical status, and providing

healthcare systems for developing countries. Developing a

portable OCT device for such purposes would also be

beneficial. It can be applied in tracking the progress of

glaucoma, diabetic macular edema, and other ophthalmic or

dermatologic diseases, for instance [12, 17-19]. However,

we expect there will be several shortcomings of portable

OCT devices versus a conventional OCT system, such as

degraded resolution, low signal-to-noise ratio, low frame

rate, etc. One of our major concerns is low frame rate.

Conventional high-performance processing devices are

relatively bulky and consume much power, which limits

Heterogeneous Computation on Mobile Processor for Real-time Signal Processing and

Visualization of Optical Coherence Tomography Images

Jaehong Aum1, Ji-hyun Kim2, Sunghee Dong2, and Jichai Jeong2*

1Department of Computer and Radio Communication Engineering, Korea University, Seoul 02841, Korea
2Department Brain and Cognitive Engineering, Korea University, Seoul 02841, Korea

(Received June 28, 2018 : revised August 9, 2018 : accepted September 4, 2018)

We have developed a high-performance signal-processing and image-rendering heterogeneous computation

system for optical coherence tomography (OCT) on mobile processor. In this paper, we reveal it by

demonstrating real-time OCT image processing using a Snapdragon 800 mobile processor, with the

introduction of a heterogeneous image visualization architecture (HIVA) to accelerate the signal-processing

and image-visualization procedures. HIVA has been designed to maximize the computational performances

of a mobile processor by using a native language compiler, which targets mobile processor, to directly access

mobile-processor computing resources and the open computing language (OpenCL) for heterogeneous

computation. The developed mobile image processing platform requires only 25 ms to produce an OCT

image from 512 × 1024 OCT data. This is 617 times faster than the naïve approach without HIVA, which

requires more than 15 s. The developed platform can produce 40 OCT images per second, to facilitate

real-time mobile OCT image visualization. We believe this study would facilitate the development of

portable diagnostic image visualization with medical imaging modality, which requires computationally

expensive procedures, using a mobile processor.

Keywords : Biomedical imaging, Optical coherence tomography, Biophotonics

OCIS codes : (170.3880) Medical and biological imaging; (110.4500) Optical coherence tomography;

(110.4155) Multiframe image processing

*Corresponding author: jcj@korea.ac.kr, ORCID 0000-0003-0225-8534

 Color versions of one or more of the figures in this paper are available online.

*

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/
licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is
properly cited.

*Copyright 2018 Current Optics and Photonics

ISSN: 2508-7266(Print) / ISSN: 2508-7274(Online)

DOI: https://doi.org/10.3807/COPP.2018.2.5.453

Current Optics and Photonics, Vol. 2, No. 5, October 2018454

their usage for portable devices. On the other hand, a

processing device that can be installed in a mobile device

for its smaller size and low power consumption shows low

computational performance. This may demand an excessively

long time to obtain OCT image visualizations. The critical

hurdles here are developing a mobile image processing

platform for OCT and utilizing it for practical applications.

Currently, it is difficult to implement OCT hardware using

mobile devices, except for the optics. In the near future,

we may expect to implement OCT hardware including

OCT-control and image-processing parts on mobile devices.

Before implementing OCT hardware on mobile devices

aside from the optics part, we would like to identify the

limit steps in image processing that cause the process to

take a long time.

A system-on-a-chip (SoC) is an integrated circuit that

contains all components in a single chip. A SoC typically

contains a memory block, microprocessor, and data I/O

interface. Owing to their low power consumption and

miniaturize size, SoCs are commonly used in mobile

electronic devices. Further, high-performance SoCs called

mobile processor have been developed for smartphones, to

process multimedia content. The microprocessor of a mobile

chip consists of multiple processing units, such as a central

processing unit (CPU), digital signal processor (DSP), and

GPU to process multimedia content, as shown in Fig. 1.

The computational performance of each processing unit is

not significant, but we believe utilizing multiple processing

units in a parallel computation scheme would greatly

increase performance. To the best of our knowledge, an

OCT image processing that solely runs on a mobile

processor has never been investigated. Our primary interest

is to develop a fully optimized scheme for processing

raw OCT image data and visualizing those images in real

time on a mobile device. Furthermore, we investigate the

possibility of developing a real-time OCT image platform

using a mobile processor.

In this paper, we present a mobile image-processing

platform developed for mobile processor with a fully

optimized processing scheme that processes OCT data and

renders images. The image-processing platform uses a

Snapdragon 800 mobile processor installed in a Samsung

SHV-E330S smartphone. It was developed as an Android

application for compatibility with the Android OS that

dominates the smartphone market (about 85% market

share in 2017 [20]). Without optimization for high-speed

computation, the mobile devices required more than 15 s

to produce an OCT image from 512 × 1024 OCT raw data,

which is too slow to be applied to real-time visualization.

Consequently, to increase its computation speed we

introduced an accelerated processing system, which we call

HIVA. Initially we employed a native development kit

(NDK), which facilitates direct access to the computing

resources of the device by compiling the native language

into machine-language code targeting the mobile processor.

With the NDK adopted, the time to produce an OCT

image was reduced to 1,160 ms, which represents a 13.3-

fold increase in computing performance. Subsequently, for

further acceleration of the devices we adopted the open

computing language (OpenCL), which facilitates hetero-

geneous computation using multiple processing units of a

mobile processor. By using precomputed data to avoid

unnecessary recomputation, full utilization of multiple cores

of the GPU, and maximization of data access throughput

with consideration of coalesced memory access, the OpenCL

processing scheme was optimized. With the implementation

of our proposed mobile platform, the time to produce an

OCT image was further reduced to 25 ms, an additional

46.4-fold acceleration. This allows an imaging rate of 40

frames per second, as achieved by real-time visualization.

Compared to the initial version, which took 15 s to produce

an OCT image, our proposed method shows 617-fold

acceleration.

II. METHODS

We introduce HIVA for the purpose of maximizing the

computational performance of a mobile processor, which

runs on the Android OS, when it processes raw OCT-

signal data and renders the produced tomographic images

as an Android application for an OCT imaging system.

HIVA accelerates the processing speed by skipping

unnecessary, heavily delaying procedures while executing

functions in runtime, with an alternative method for

executing functions with a native-language-coded system.

It exploits multiple processing units of a mobile processor

with high-performance parallel computation to minimize

the time consumed for the OCT signal processing tasks,

which demand heavy computational overhead.

FIG. 1. Architecture of a Snapdragon 800 mobile processor.

The mobile processor consists of multiple processing units,

data I/O interface, geometric location-tracking system, and a

shared memory block.

Heterogeneous Computation on Mobile Processor for … - Jaehong Aum et al. 455

2.1. Overview of High-performance Computation on

Android Applications

Android applications are developed using Java, an

interpreted language that executes in a virtual machine. It

does not allow direct access to device resources. These

features facilitate program compatibility and stability, which

are critical for Android applications running on various

devices. However, algorithms written in Java execute more

slowly than algorithms written in native languages such as

C/C++, which execute their instructions on the processor

directly, as described in Fig. 2. The performance gap

between an interpreted language and a native language

becomes severe when it comes to computationally intensive

work. To overcome the performance issues associated with

Java, a native language compiler that produces machine

code that runs on mobile processor is needed. Furthermore,

many C/C++ libraries and APIs that enable high-performance

computation on a device exploiting multiple processing units,

such as open multiprocessing (OpenMP), open graphics

library (OpenGL), and OpenCL, can be adopted.

OpenMP facilitates multithreaded computation with a

simple modification of existing code. This multithreaded

computation accelerates computing speed by utilizing

multiple CPU cores concurrently. With OpenMP, acceleration

of twofold or threefold can generally be expected. However,

computing performance is limited when only a CPU is used.

OpenGL and OpenCL allow parallel computation involving

a GPU, which is a high-performance parallel-computing-

optimized processing unit. With the aid of GPUs, a huge

acceleration in OCT data-processing speed can be expected,

as the OCT data-processing task is highly amenable to

parallel computation. OpenGL was originally developed to

process graphics tasks, while OpenCL was developed for

application to parallel computing across heterogeneous

platforms consisting of CPU, GPU, DSP, etc., to perform

general tasks rather than graphics tasks. Unlike OpenMP,

adopting OpenGL or OpenCL is complex; however, the

adoption promises much higher computational performance.

2.2. Heterogeneous Computation Scheme for Concurrent

Utilization of Multiple Processing Units from a

Mobile Processor

To develop HIVA, we used the following development

tools: Android Studio 1.4, Android SDK 5.0.1, Android

NDK 11.0.0, Gradle 2.8, OpenGLes 2.0, OpenCL 1.1, and

Java 1.7. Android Studio provides an integrated development

environment, Gradle is a build tool for Android applications,

and OpenGLes is a version of OpenGL that is targeted at

mobile devices. We developed the main structure of the

application, including the user interface and data I/O system,

in Java. However, the sections dealing with intensive

computing tasks, such as OCT signal processing and image

rendering, were written in C/C++ with the aid of the NDK.

NDK is a set of compilers that compiles native-language

source code into machine code, targeting various types of

mobile processing devices. With the NDK, we can compile

C/C++ code into machine code that can run directly on the

processor of a mobile chip. However, the C/C++ -written

and -compiled codes cannot be called directly, unless a

Java method calls them, since an Android application

should be written in Java. For the purpose of calling the

machine code with a Java method, we defined in Java the

native methods associated with the image-rendering and

OCT-signal-processing tasks, as shown in Fig. 3. The native

methods were incomplete methods, without implementation

code. We wrote the implementation of the methods as

FIG. 2. Illustration of the steps from source codes, written in

native language and interpreted language respectively, to be

executed on a user machine. Gray boxes indicate the steps

performed before runtime. A native-language-written program

needs fewer steps to be executed in runtime.

FIG. 3. Illustration of the relationship between the Java-coded

methods and C/C++ -coded functions associated with NDK

and JNI.

Current Optics and Photonics, Vol. 2, No. 5, October 2018456

C/C++ functions that are then compiled into machine code.

The separate definition and implementation for each

method are then linked through the Java native interface

(JNI). When the native Java methods are called, JNI calls

the corresponding natively coded functions and passes

arguments between them. In this manner, we can execute

C/C++ machine code by calling a Java method in an

Android application.

For those parts of programs that are not specifically to

be executed on a single-core CPU, we adopt OpenGL and

OpenCL over OpenMP to exploit the computing power of

the GPU contained in a mobile processor. To initialize

OpenGL to render OCT images, we allocate a two-

dimensional (2D) buffer for each OCT image. In addition

to writing basic GPU rendering tasks via shader code, we

wrote modules for adjusting the contrast and brightness

levels of the image manually, to maximize the visibility of

the sample obtained from an OCT image. In contrast to

OpenGL, OpenCL has a relatively complex initialization

process. First, we select the processor we wish to use with

the OpenCL API, which in our case is the GPU. Next, we

allocate GPU buffers to save and process OCT data.

OpenCL defines functions called kernel functions, to run on

GPUs. However, prior to launching these kernel functions

it is necessary to compile their associated code into the

machine code of the GPU, using the OpenCL compiler.

OCT-signal-processing tasks are written as kernel functions

and compiled into machine code.

Figure 4 illustrates the schematic for our real-time mobile-

device OCT system. First, we load OCT raw data from

the Java side, and call the native method to process OCT

data from the C/C++ side. When the method is called for

the first time, OpenGL and OpenCL are initialized prior to

signal processing and image rendering. To produce OCT

images from OCT raw data, we use k-space resampling

with linear interpolation, removal of DC signal, and IFFT,

as we did in a previous study, in which CUDA was used

to develop a real-time OCT system [8]. Prior to launching

the kernel functions from OpenCL, the data must be

transferred to the OpenCL device buffer, which is the GPU

buffer in our case. While launching the kernel functions,

OCT signal processing is performed using the GPU. In

this process we create two-dimensional multiple threads,

which are dedicated one-to-one to the same number of

each OCT image’s pixels, to process each pixel’s data in

parallel using OpenCL, as shown in Fig. 5. In this manner

we can maximally utilize hundreds of processing cores,

keeping a minimal number of cores idling. To avoid

unnecessary repeated computation, we use precomputed

information about the OCT signal, such as the DC spectrum

and interpolation position indices. The dataset of the

information was organized and saved in one-dimensional

buffers in serial order, to satisfy the coalesced memory-

access condition when we access the dataset [21, 22]. The

processed data from the GPU computation are then

transferred to the vertex buffer, which holds the OCT

image for rendering on a display, using OpenGL. The

image rendering via OpenGL is performed asynchronously,

regardless of the signal processing task.

III. RESULTS

We used a Samsung SHV-E330S smartphone to verify

the efficacy of our system. This model smartphone has a

Qualcomm Snapdragon 800 mobile processor, which

comprises a 2.26 GHz four-core CPU and a GPU containing

FIG. 4. Schematic of the proposed OCT signal processing and image rendering, fully optimized for high-speed computation on mobile

processor.

FIG. 5. One-to-one matching relation between two-dimen-

sional multiple threads and two-dimensional-image pixel data.

Heterogeneous Computation on Mobile Processor for … - Jaehong Aum et al. 457

128 arithmetic logic units (ALUs). 2 GB of LPDDR3 RAM

with 800 MHz memory frequency is installed, which is

shared by the CPU, GPU, and other processing units. The

OS version used was Android 5.0.1, and the applications

were built targeting this same Android OS version. We

subsequently measured the processing time to produce an

OCT image from raw OCT data with our proposed system.

Identical OCT-signal-processing systems were also developed

with different methods, and the processing times of those

systems measured, to compare computational speeds. The

sample OCT data used were 512 × 1024 2D data, obtained

by scanning an African clawed frog (Xenopus laevis) with

a fiber-based spectral-domain OCT (SD-OCT) [9]. The

original bit depth of the data was 12 bits in the form of

unsigned integers, and then we converted it into 32-bit

floating numbers for numerical stability while processing

the data. The size of the raw OCT datafile for a single

OCT image was 2 MB.

Table 1 shows the processing times required to produce

the OCT images from raw OCT data under the various

processing systems. For this test, we preloaded the data in

memory and fetched it every time for a new OCT image.

The produced images were displayed on the 1080 × 1920-

resolution supported AMOLED display installed on the

smartphone. First, the Java-coded system required almost

15 s to produce an OCT image. With the help of the NDK,

a C/C++ -coded system was developed that took 1160 ms,

approximately 13 times as fast as the Java system. Further,

when OpenCL was adopted for our proposed system,

processing took only 25 ms, which is a 617-fold increase

in speed compared to the Java-coded system. This result

proves that our system is capable of producing 40 OCT

images per second, to realize real-time imaging. The OCT

images produced with our proposed system are presented

in Fig. 6.

Accelerating the computing speed with OpenCL using

GPU computation is relatively complicated. OpenMP,

another tool for accelerating computing speed, is easier to

apply. For comparison, we applied OpenMP to our system

and subsequently measured the processing time of the

system. With the application, the processing speed increased

approximately fourfold, taking 258 ms to produce an OCT

image by utilizing multiple cores of the CPU, compared to

the single-core case that took 1160 ms. Adopting OpenMP

is simpler than adopting OpenCL, resulting in improved

computational performance. We consider applying OpenMP

instead of OpenCL with GPU computation, when the GPU

is fully dedicated to other processing tasks, or the system

does not require heavy computation.

In Table 2 we present the computation time for each

step of producing an OCT image, to investigate the

performance gain we achieved in each step by applying our

heterogenous computation system on a mobile processor.

The most significant performance gain was observed in the

IFFT step, which has a complexity of O(n log(n)), while the

other steps are O(n), where n is the data size. Compared

to the single-core case, the GPU case showed about

180-fold increase in computing speed. On the other hand,

the GPU case required data-transfer steps between host and

device before GPU computation, which was unnecessary

for the CPU-only case. Unlike desktop GPUs, a mobile

chip’s GPU does not possess its own physical memory,

which is often referred to as device memory, but it shares

a unified physical memory with the CPU. However, it is

still necessary to transfer data between host and device for

GPU computation, because the host and device are not

physically separated, but virtually divided. The data-transfer

step from host to device took about 1.7 ms, only 6.7% of

the total processing time of 25.1 ms. We also measured

the processing time using a desktop GPU Nvidia GTX680

TABLE 1. Comparison of the speed at which an OCT image is produced, with processing systems under different conditions

Type of system Java coded system C/C++ coded system HIVA

Library used - - OpenMP OpenCL

Processor (number of utilized ALUs) CPU (1 core) CPU (1 core) CPU (4 cores) GPU (128 cores)

Processing time 15,423 ms 1160 ms 258 ms 25 ms

Relative speed 1 13.30 59.78 616.92

FIG. 6. Our proposed technique produced OCT sample images taken from the (a) eye and (b) brain regions of an African clawed frog

(Xenopus laevis). These images were rendered on a display panel from SHV-E330S and captured by a capturing application.

Current Optics and Photonics, Vol. 2, No. 5, October 2018458

for the same processing steps, using CUDA. The estimated

total processing time using the desktop GPU was 4.67 ms,

which is about 5 times as fast as HIVA.

IV. DISCUSSION

In the case of a desktop GPU, the data-transfer step

took about 1.56 ms, taking a significant amount of the

total processing time (33.4%). In fact, the data-transfer

throughput of the desktop GPU was 5.82 GB/s, while the

mobile processor’s was 4.51 GB/s, showing little difference.

For a desktop GPU, it is critical to minimize data-transfer

time, which required several optimization techniques to be

introduced, such as using page-locked memory with direct-

memory-access units (DMA), asynchronous data streaming,

etc. However, it was not a critical issue for the mobile

processor, taking only 6.7% of total processing time in our

case, without employing such methods.

We have tested our system with the raw OCT data

preloaded into the memory. For real applications, raw data

should be transferred from an OCT hardware device to the

memory. However, it may not be a critical concern, since

there are some high-bandwidth interfaces for real-time data

transfer. For instance, SATA III, USB 3.0, and USB 2.0

support 768, 625, and 60 MB/s, respectively. Since our

raw-datafile size for a single OCT image was 2 MB (768

kB before conversion to 32-bit floating variable), 80 frames

of OCT data can be theoretically transferred per second

even using just USB 2.0, which would be enough for our

system.

We have demonstrated a significant acceleration in OCT

image production on a mobile processor. However, we

believe further improvement of the system is possible.

There exists latency when we launch each OpenCL kernel

function for GPU computation. Generally, the latency is

much higher than the latency observed when launching

common C/C++ -coded functions. We also observed the

high latency by estimating the elapsed time for launching a

simple OpenCL kernel function that performs element-wise

addition in the GPU; it took about 4.9 ms. Since most of

the steps took between 5 and 7 ms, the latency can be

considered a critical bottleneck of the system. We expect

that further improvement of the processing speed can be

realized by integrating the multiple kernel functions into a

single kernel function that is carefully designed concerning

synchronization of multiple threads. We leave this for our

future work, including the development of a real-time-

imaging, fully portable OCT device.

V. CONCLUSION

In this paper we developed a high-performance signal-

processing and image-rendering heterogeneous computation

system for optical coherence tomography (OCT) on mobile

processor, with the introduction of HIVA. Over the past

decade, various high-performance processing units have been

adopted to facilitate the development of real-time OCT

systems. However, to the best of our knowledge this is the

first system to employ a mobile processor to process OCT

data in real time. The mobile platform was developed as

an Android application running on a smartphone (Samsung

SHV-E330S) with a Snapdragon 800 mobile processor. The

initial OCT-data-processing scheme without HIVA required

approximately 15 s to produce a 512 × 1024 OCT image

from raw OCT data. NDK was adopted to reduce the

processing time to 1160 ms with direct access to the

computing resources of the mobile processor. Furthermore,

we performed heterogeneous computation using OpenCL

along with full optimization of the processing scheme,

focusing on maximum utilization of the mobile processor’s

processing resources. This resulted in further reduction of

the processing time to 25 ms. The processing-time reduction

allows us to realize real-time systems able to process 40

OCT images per second. Our developed technique exhibited

a 617-fold increase in computation speed, compared to the

15 s required by the unoptimized system. This proves that

it is possible to develop real-time OCT image visualization

using a single mobile processor, if it has a fully optimized

processing system that utilizes heterogeneous computation.

TABLE 2. Comparison of the processing time for each step to produce an OCT image, with and without a multicore parallel processing

scheme

Type

Mobile processor

(Snapdragon 800)

Desktop GPU

(Nvidia GTX680)

CPU (1 core) CPU (4 cores) GPU (128 cores) GPU (1536 cores)

Data transfer (host to device) - - 1.7 ms 1.56 ms

DC elimination 34.8 ms 14.1 ms 5.2 ms 0.12 ms

K-space resampling 119.3 ms 32.3 ms 6.1 ms 0.57 ms

IFFT 993.7 ms 205.9 ms 5.5 ms 0.17 ms

Copying produced image to pixel buffer 12.2 ms 5.6 ms 6.6 ms 0.46 ms

Total processing time 1160.0 ms 257.9 ms 25.1 ms 4.67 ms

Heterogeneous Computation on Mobile Processor for … - Jaehong Aum et al. 459

ACKNOWLEDGMENT

This research was supported by the Basic Science

Research Program through the National Research Foundation

of Korea (NRF), funded by the Ministry of Education

under Grant NRF-2015R1D1A1A01056746.

REFERENCES

1. E. Gibson, M. Young, M. V. Sarunic, and M. F. Beg,

“Optic nerve head registration via hemispherical surface

and volume registration,” IEEE Trans. Biomed. Eng. 57,

2592-2595 (2010).

2. Y.-C. Ahn, Y.-G. Chae, S. S. Hwang, B.-K. Chun, M. H.

Jung, S. J. Nam, H.-Y. Lee, J. M. Chung6, C. Oak, and

E.-K. Park, “In vivo optical coherence tomography imaging

of the mesothelium using developed window models,” J.

Opt. Soc. Korea 19, 69-73 (2015).

3. R. Kafieh, H. Rabbani, F. Hajizadeh, and M. Ommani,

“An accurate multimodal 3-D vessel segmentation method

based on brightness variations on OCT layers and curvelet

domain fundus image analysis,” IEEE Trans. Biomed. Eng.

60, 2815-2823 (2013).

4. P. Li, X. Yin, L. Shi, A. Liu, S. Rugonyi, and R. K.

Wang, “Measurement of strain and strain rate in embryonic

chick heart in vivo using spectral domain optical coherence

tomography,” IEEE Trans. Biomed. Eng. 58, 2333-2338

(2011).

5. N. H. Cho, U. Jung, H. I. Kwon, H. Jeong, and J. Kim,

Development of SD-OCT for imaging the in vivo human

tympanic membrane,” J. Opt. Soc. Korea 15, 74-77 (2011).

6. G. Liu, J. Zhang, L. Yu, T. Xie, and Z. Chen, “Real-time

polarization-sensitive optical coherence tomography data

processing with parallel computing,” Appl. Opt. 48, 6365-

6370 (2009).

7. T. E. Ustun, N. V. Iftimia, R. D. Ferguson, and D. X.

Hammer, “Real-time processing for Fourier domain optical

coherence tomography using a field programmable gate

array,” Rev. Sci. Instrum. 79, 114301 (2008).

8. J.-H. Kim, J. Aum, J.-H. Han, and J. Jeong, “Optimization of

compute unified device architecture for real-time ultrahigh-

resolution optical coherence tomography,” Opt. Commun.

334, 308-313 (2015).

9. N. H. Cho, U. Jung, S. Kim, W. Jung, J. Oh, H. W. Kang,

and J. Kim, “High speed SD-OCT system using GPU

accelerated mode for in vivo human eye imaging,” J. Opt.

Soc. Korea 17, 68-72 (2013).

10. Y. Watanabe and T. Itagaki, “Real-time display on Fourier

domain optical coherence tomography system using a

graphics processing unit,” J. Biomed. Opt. 14, 060506-

060506-3 (2009).

11. Y. Huang, X. Liu, and J. U. Kang, “Real-time 3D and 4D

Fourier domain Doppler optical coherence tomography based

on dual graphics processing units,” Biomed. Opt. Express

3, 2162-2174 (2012).

12. W. Jung, J. Kim, M. Jeon, E. J. Chaney, C. N. Stewart,

and S. A. Boppart, “Handheld optical coherence tomography

scanner for primary care diagnostics,” IEEE Trans. Biomed.

Eng. 58, 741-744 (2011).

13. S. Dong, K. Guo, P. Nanda, R. Shiradkar, and G. Zheng,

“FPscope: a field-portable high-resolution microscope using a

cellphone lens,” Biomed. Opt. Express 5, 3305-3310 (2014).

14. T. Li, M. Duan, K. Li, G. Yu, and Z. Ruan, “Bedside

monitoring of patients with shock using a portable spatially-

resolved near-infrared spectroscopy,” Biomed. Opt. Express

6, 3431-3436 (2015).

15. K. Daoudi, P. J. van den Berg, O. Rabot, A. Kohl, S.

Tisserand, P. Brands, and W. Steenbergen, “Handheld

probe integrating laser diode and ultrasound transducer

array for ultrasound/photoacoustic dual modality imaging,”

Opt. Express 22, 26365-26374 (2014).

16. D. D. Mehta, N. T. Nazir, R. G. Trohman, and A. S.

Volgman, “Single-lead portable ECG devices: Perceptions

and clinical accuracy compared to conventional cardiac

monitoring,” J. Electrocardiol. 48, 710-716 (2015).

17. X. Xu, L. Yu, and Z. Chen, “Effect of erythrocyte

aggregation on hematocrit measurement using spectral-domain

optical coherence tomography,” IEEE Trans. Biomed. Eng.

55, 2753-2758 (2008).

18. S. Lee, E. Lebed, M. V. Sarunic, and M. F. Beg, “Exact

surface registration of retinal surfaces from 3-D optical

coherence tomography images,” IEEE Trans. Biomed. Eng.

62, 609-617 (2015).

19. F. Atry, S. Frye, T. J. Richner, S. K. Brodnick, A.

Soehartono, J. Williams, and R. Pashaie, “Monitoring cerebral

hemodynamics following optogenetic stimulation via optical

coherence tomography,” IEEE Trans. Biomed. Eng. 62,

766-773 (2015).

20. Smartphone OS Market Share, 2017 Q1, https://www.idc.com/

promo/smartphone-market-share/os (2017).

21. G. Chen, X. Shen, B. Wu, and D. Li, “Optimizing data

placement on GPU memory: A portable approach,” IEEE

Trans. Comput. 99, 1-1 (2016).

22. R. Melo, G. Falcao, and J. P. Barreto, “Real-time HD image

distortion correction in heterogeneous parallel computing

systems using efficient memory access patterns,” J. Real

Time Image Process. 11, 83-91 (2016).

