• Title/Summary/Keyword: Computation Procedures

Search Result 103, Processing Time 0.023 seconds

Numerical analysis of local exhaust effectiveness using reverse-flow calculation method (역유동계산법을 이용한 국소배기효율의 수치해석)

  • 한화택
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.6
    • /
    • pp.658-665
    • /
    • 1998
  • This paper investigates local exhaust effectiveness in a room with a supply and an exhaust slots on the ceiling. The mean age of air is an indicator of supply effectiveness, while the mean residual life time can be used as an indicator of exhaust effectiveness. The distribution of local mean residual life time in a space is calculated by four different numerical procedures. The reverse-flow calculation method has been proved to show quite accurate results while it can save considerable amount of computation time and efforts, compared to the method by its original definition. It is concluded that the diffusion term in the equation of mean residual life time can be neglected. The spatial and temporal diffusion characteristics of the contaminant are also discussed.

  • PDF

A Benchmark study on the reference stress to supply fatigue analysis of welded structure (용접구조물 피로해석 적용을 위한 기준응력 비교 연구)

  • 서정관;최홍민;이제명;백점기;김명현;김현수
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.421-428
    • /
    • 2004
  • Various type of welded joints of the ship structure have been examined numerically and experimentally under bending and tensional cyclic constant-amplitude loading. Cyclic loading on structures can produce failures not readily predicted by conventional static analysis. The aim of a benchmark study is achieved with a generalization of the reference stress concept. Also different methods and procedures exist for the computation of the welded structure hot-spot stress a welded joints. These are either based on the extrapolation of stresses at certain reference points on the plate surface (or edge) close to the weld toe-as known from experimental investigations- or on the linearization of stresses in the through-thickness direction. In the present paper, the different methods are reviewed and applied to four different details in order to compare the methods with each other and to illustrate the differences.

  • PDF

A Study on the Analysis and State Estimation of Bilinear Systems via Orthogonal Functions (직교함수에 의한 쌍일차계의 해석 및 상태 추정에 관한 연구)

  • 안두수;신재선
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.6
    • /
    • pp.598-606
    • /
    • 1990
  • Common problems encountered when orthogonal functions are used in system analysis and state estimation are the time consuming process of high order matrix inversion required in finding the Kronecker products and the truncation errors. In this paper, therefore, a method for the analysis of bilinear systems using Walsh, Block pulse, and Haar functions is devised, Then, state estimation of bilinear system is also studied based on single term expansion of orthogonal functions. From the method presented here, when compared to the other conventional methods, we can obtain the results with simpler computation as the number of interval increases, and the results approach the original function faster even at randomly chosen points regardless of the definition of intervals. In addition, this method requires neither the inversion of large matrices on obtaining the expansion coefficients nor the cumbersome procedures in finding Kronecker products. Thus, both the computing time and required memory size can be significantly reduced.

  • PDF

Prarmeter Tuning of Fuzzy Cotroller using Neural Networks System Identifier (신경회로망 시스템 식별기를 이용한 퍼지제어기의 변수동조)

  • 이우영;최흥문
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.6 no.3
    • /
    • pp.40-50
    • /
    • 1996
  • By using the neural networks(NN) as system identifier, the on-line self tuning method for fuzzy controller(FC) is proposed. In theis method, the learning of NN is carried out during control operation of FC and the cinsequent parameters of FC is tuned on-line automatically by means of system output errors backpropagated through NN. The Sugeno fuzzy model with constants as consequent parameters is selected for simplifying computation. In procedures of parameter tuning, the gradient descent method is used and the gradient vectors for adjusting the weight of NN are transferred as controller output errors. To evaluate the performance, the proposed method is applied to the inverted pendulum system.

  • PDF

Routing Service Implementation using a Dual Graph (듀얼 그래프를 이용한 라우팅 서비스 구현)

  • 김성수;허태욱;박종현;이종훈
    • Proceedings of the IEEK Conference
    • /
    • 2003.11b
    • /
    • pp.171-174
    • /
    • 2003
  • Shortest path problems are among the most studied network flow optimization problems, with interesting applications in various fields. One such field is the route determination service, where various kinds of shortest path problems need to be solved in location-based service. Our research aim is to propose a route technique in real-time location-based service (LBS) environments according to user's route preferences such as shortest, fastest, easiest and so on. Turn costs modeling and computation are important procedures in route planning. We propose a new rest modeling method for turn costs which are traditionally attached to edges in a graph. Our proposed route determination technique also has an advantage that can provide service interoperability by implementing XML web service for the OpenLS route determination service specification.

  • PDF

The Evaluation of Reliability in a Composite Power System using Simplified Simulation Techniques (간략화 모의 기법을 이용한 대전력 계통 신뢰도 계산)

  • Kim, Dong-Hee;Kim, Jin-O
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.221-223
    • /
    • 1997
  • This paper presents the Simplified Simulation Technique that evaluates the adequacy of an electric power system using only a portion of the outage period instead of each hour. Reliability evaluation may be performed at various hierarchical levels, generation, transmission and distribution system. The Simplified Simulation Technique simplifies the adequacy evaluation process reducing the number of calculations considerably. Therefore the computation time can be significantly reduced. This paper is done to compare the results of the simulation model with the Simplified Simulation Technique against the results of the simulation model without the Simplified Simulation Technique. The reliability indices such as the Loss of Load Probability(LOLP), the loss of load frequency(LOLF), the average duration of load curtailment(DLC) and the average demand of load curtailment(ADLC) are calculated. The proposed methods and procedures are tested by using the IEEE-RTS with 24-bus system.

  • PDF

AN EFFICIENT ALGORITHM FOR SLIDING WINDOW BASED INCREMENTAL PRINCIPAL COMPONENTS ANALYSIS

  • Lee, Geunseop
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.2
    • /
    • pp.401-414
    • /
    • 2020
  • It is computationally expensive to compute principal components from scratch at every update or downdate when new data arrive and existing data are truncated from the data matrix frequently. To overcome this limitations, incremental principal component analysis is considered. Specifically, we present a sliding window based efficient incremental principal component computation from a covariance matrix which comprises of two procedures; simultaneous update and downdate of principal components, followed by the rank-one matrix update. Additionally we track the accurate decomposition error and the adaptive numerical rank. Experiments show that the proposed algorithm enables a faster execution speed and no-meaningful decomposition error differences compared to typical incremental principal component analysis algorithms, thereby maintaining a good approximation for the principal components.

An implicit decoupling method for unsteady RANS computation (비정상 RAMS 계산을 위한 내재적 분리 방법)

  • Rhee, Gwang-Hoon;Sung, Hyung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.704-708
    • /
    • 2000
  • A new efficient numerical method for computing unsteady, incompressible flows, DRANS (Decoupled Reynolds-Averaged Navier-Stokes), is presented. To eliminate the restriction of CFL condition, a fully-implicit time advancement in which the Crank-Nicolson method is used fer both the diffusion and convection terms. is adopted. Based on decomposition method, the velocity-turbulent quantity decoupling is achieved. The additional decoupling of the intermediate velocity components in the convection term is made for the fully-implicit time advancement scheme. Since the iterative procedures for the momentum, ${\kappa}\;and\;{\varepsilon}$ equations are not required, the components decouplings bring fourth the reduction of computational cost. The second-order accuracy in time of the present numerical algorithm is ascertained by computing decaying vortices. The present decoupling method is applied to turbulent boundary layer with local forcing.

  • PDF

Dynamic Contact Analysis of Spur Gears (평기어의 동접촉 해석)

  • Lee, Ki-Su;Jang, Tae-Sa
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.6
    • /
    • pp.148-159
    • /
    • 1999
  • A numerical method is presented for the dynamic analysis of spur gears rotating with very high angular speeds. For an efficient computation each gear is assumed to consist of a rotating rigid disk and an elastic tooth having mass, and finite element formulations are used for the equations of motion of the tooth. The geometric constraint is imposed between the rigid disk and the elastic tooth to fix them, and contact condition is imposed between the meshing teeth of the gears. At each iteration of each time step the Lagrange multiplier and contact force are revised by using the constraint error vector, and then the whole equations of motion are time integrated with the given Lagrange multiplier and contact force. For the accurate solution the velocity and acceleration constraints as well as the displacement constraint are satisfied by the monotone reductions of the constraint error vectors. Computing procedures associated with the iterative schemes are explained and numerical simulations are conducted with the spur gears.

  • PDF

Computation of theoretical design parameter of sin91e Phase SRM for a blower drives (송풍기 구동용 단상 SRM의 이론적 설계파라미터 산정)

  • Lee, Jong-Han;Lee, Chung-Won;Lee, Eun-Woong;Oh, Young-Woong
    • Proceedings of the KIEE Conference
    • /
    • 2003.04a
    • /
    • pp.88-90
    • /
    • 2003
  • SRM has a characteristic of a robust, simple structure and wide operating ranges. So, recently it has studied and developed in many kinds and forms with the technology of power electronics and analysis and design by use of computer. Also, It is used in a very wide range of industrial applications. In particular, single phase switched reluctance motor has a merit in practical use because it has simple operating drives and control systems, very high energy density per unit volume comparing with three phase SRM. But it must have a starting device. In this paper design procedures of single phase SRM development for blower drives are presented. It is selected the design parameters by compared with design theory of general electric machine and poly phase SRM. Also it is simulated the designed prototype model by FEM for the prediction of characteristics.

  • PDF