
J. Korean Math. Soc. 57 (2020), No. 2, pp. 401–414

https://doi.org/10.4134/JKMS.j190095

pISSN: 0304-9914 / eISSN: 2234-3008

AN EFFICIENT ALGORITHM FOR SLIDING WINDOW

BASED INCREMENTAL PRINCIPAL COMPONENTS

ANALYSIS

Geunseop Lee

Abstract. It is computationally expensive to compute principal compo-
nents from scratch at every update or downdate when new data arrive

and existing data are truncated from the data matrix frequently. To over-

come this limitations, incremental principal component analysis is consid-
ered. Specifically, we present a sliding window based efficient incremental

principal component computation from a covariance matrix which com-
prises of two procedures; simultaneous update and downdate of principal

components, followed by the rank-one matrix update. Additionally we

track the accurate decomposition error and the adaptive numerical rank.
Experiments show that the proposed algorithm enables a faster execu-

tion speed and no-meaningful decomposition error differences compared

to typical incremental principal component analysis algorithms, thereby
maintaining a good approximation for the principal components.

1. Introduction

Principal components analysis (PCA) computes a set of linear uncorrelated
variables, called principal components, from a set of possibly correlated data
by using an orthogonal transformation. This technique aims at extracting the
important information from a data, reducing the dimensionality, or analyzing
the structure from the observations and the variables [1]. In particular, if we
consider a data matrix X̄n ∈ Rm×n,m ≥ n, then the principal components of
X̄n are computed from the eigenvectors of the covariance matrix, or singular
vectors of the zero-mean matrix Xn, where Xn is computed from

Xn = X̄n −mneT .

Here, the vector e ∈ Rn is a vector of 1s, and the mean vector mn of X̄n is
obtained from

mn =
1

n
X̄ne.

Received January 31, 2019; Revised April 19, 2019; Accepted May 31, 2019.
2010 Mathematics Subject Classification. Primary 15A18, 15A23.

Key words and phrases. Incremental principal components analysis, sliding window.

c©2020 Korean Mathematical Society

401



402 G. LEE

Assume that we have the singular value decomposition (SVD) of Xn, such
that

(1.1) Xn = Un

(
Σn

0

)
V T
n + En,

where Un ∈ Rm×k and Vn ∈ Rn×k represent the left and right orthogonal
matrices, Σn = diag(σ1, . . . , σk), σ1 ≥ · · · ≥ σk, and σi is the i-th largest
singular value of Xn, respectively. We denote En as the decomposition error
matrix due to the truncation, and the truncation level k ≤ n as the rank of
Xn. Then, the principal components of X̄n are equivalent to the left singular
vectors Un in (1.1).

In many contexts, a new data xn+1 is continuously added to X̄n, and it
generates a new data matrix X̄n+1 =

(
X̄n xn+1

)
. Simultaneously in order

to maintain the fixed size of the data matrix, x1 is downdated from X̄n+1 to

produce X̃n, where X̄n+1 =
(

x1 X̃n+1

)
. However, because the computation

of a typical PCA algorithm from X̃n+1 requires approximately O(mn2) flops, it

is prohibitively expensive to compute the PCA of X̃n+1 from scratch at every

update and downdate especially if the size of X̃n+1 is large. To overcome the
difficulties, many incremental PCA algorithms, which aim at computing the
principal components from their previous PCA matrices, have been studied
[2, 4–6, 8, 9]. Unfortunately, those algorithms increase the decomposition error
with the number of iterations. Additionally, those algorithms work when a data
matrix is updated only, or when PCA is used without computing covariance
matrix.

This limitation leads us to focus on developing a new algorithm to compute
the approximate principal components of X̃n+1 efficiently and close to those
from a typical PCA algorithm, when a data matrix is updated in the sliding
windows manner.

The zero-mean matrix Xn+1 of X̃n+1 comes from

(1.2)
(
Xn xn+1

)
=
(

x1 −mn Xn+1

)
+ (mn −mn+1)eT ,

where the mean vector mn+1 is

mn+1 =
1

n
X̃n+1e.

Obviously, the procedure of finding the principal components of Xn+1 in (1.2)
comprises of two procedures as follows:

(1) Sliding window computation: This involves updating and downdating
the SVD of Xn+1 with the given SVD of Xn when xn+1 arrives and x1

is truncated.
(2) The rank-one update: This involves computing the SVD of the form

such that

X̄ = X + stT = Ū Σ̄V̄ T + E,

where s ∈ Rm and t ∈ Rn are arbitrary vectors.



AN EFFICIENT ALGORITHM FOR SLIDING WINDOW BASED IPCA 403

The feasible constraints of the SVD on En in (1.1) must satisfy

(1.3) ‖En‖F ≤ ε, and EnVn = 0,

which further implies that En = Xn(I−VnV T
n ). Additionally we will adaptively

adjust the truncation level k of the SVD based on the value ‖En‖F and the
predefined upper bound ε. In addition, we pursue tracking the value of ‖En‖F
instead of computing En as an easier method to track the decomposition error
and save the memory space.

The rest of this paper is organized as follows. In Section 2, we present the
new procedure of the sliding window algorithm of the SVD. In Section 3, we
review the procedure of updating SVD with a rank-one matrix. In Section 4,
we presents some numerical experiments, and finally, in Section 5, we draw
conclusions.

2. Sliding window based singluar value decomposition updating
algorithm

In this section, we present a new sliding window algorithm to efficiently
generate the SVD of Xn+1 ∈ Rm×n from that of Xn in (1.2) while satisfying
the constraints (1.3). To begin with, we need to define the function that finds an
orthogonal vector from orthogonal matrices U or V . A classical Gram-Schmidt
procedure is a potential candidate to produce vector u ∈ Rm orthogonal to
given U ∈ Rm×k, which satisfies

(2.1) x =
(
U u

)( d
α

)
, UTu = 0, and ‖u‖2 = 1,

where d ∈ Rk, and α is a constant. We define this function [d, α,u] =
cgs orth(U,xn) as described in the work of Barlow et al. [3].

Then we call three Gram-Schmidt operations, such that

[l,v1] = cgs orth(Vn, e1),

[d,uk+1] = cgs orth(Un, Xnv1),

[h,u1] = cgs orth(
(
Un uk+1

)
,xn+1).(2.2)

By taking

h =

k h1

1 h2
1 h3

, d =

(
k d1

1 d2

)
,

we have that(
x1 Xn+1

)
=
(
Xn xn+1

)
=
(
Un uk+1 u1

) Σn d1 h1

0 d2 h2
0 0 h3

 V T
n 0

vT
1 0
0 1

+ Ẽn+1,(2.3)



404 G. LEE

where the new decomposition Ẽn+1 is given by

(2.4) Ẽn+1 =
(

x1 Xn+1

)
(I − Vn+1V

T
n+1) =

(
En −Xnv1v

T
1 0

)
.

Proposition 2.1. Equation (2.4) satisfies the second constraint in (1.3).

Proof. We have that

Ẽn+1Vn+1 =
(
En −Xnv1v

T
1 0

)
Vn+1

=
(

(En −Xnv1v
T
1 )Vn (En −Xnv1v

T
1 )v1 0

)
.

Since EnVn = 0, V T
n v1 = 0, and Env1 = (Xn − UnΣnV

T
n )v1 = Xnv1, all

elements of Ẽn+1Vn+1 are zero. �

Next, find the orthogonal matrix Q1, the product of given rotations, which
produces the new orthogonal matrix Vn+1 such that,(

Vn v1 0
0 0 1

)
Q1 =

(
0 1

Vn+1 0

)
,

where, Q1 makes the first row of

(
Vn v1 0
0 0 1

)
to
(

0 0 · · · 1
)
. Since

the last element is 0, Q1 may have a form such that

Q1 =

(
0 Q̃1

1 0

)
,

where Q̃T
1 Q̃1 = I, and the product of the middle matrix in (2.3) has a form

(2.5)

 Σn d1 h1

0 d2 h2
0 0 h3

Q1 =

 h1 R1

h2 r2
h3 0

 ,

where R1, r2 are parts of intermediate result from the matrix-matrix multipli-
cation. Then, we need an orthogonal matrix P1, which makes (2.5) triangular
form, such that

PT
1

 h1 R1

h2 r2
h3 0

 =

(
R̃ r̃
0 r̃

)
.

Thus, by taking a new Un+1 from(
Un+1 ũ1

)
=
(
Un uk+1 u1

)
P1,

we have a new decomposition(
x1 Xn+1

)
=
(
Un+1 ũ1

)( R̃ r̃

0 h̃3

)(
0 1

Vn+1 0

)T

+ Ẽn+1,

and its donwdated form yields

(2.6) Xn+1 = Un+1R̃V
T
n+1 + Ẽn+1(:, 2 : n).



AN EFFICIENT ALGORITHM FOR SLIDING WINDOW BASED IPCA 405

Since R̃ is a triangular matrix, by computing the SVD of the middle matrix
in (2.6) like R̃ = PT

2 Σn+1Q2, we have a SVD form of Xn+1 = Un+1Σn+1V
T
n+1+

Ẽn+1(:, 2 : n) such that

Un+1 = Un+1P2,

Σn+1 = P2R̃Q
T
2 ,

Vn+1 = Vn+1Q2.(2.7)

Proposition 2.2. Let Ẽn+1 =
(

0 En+1

)
. Then En+1 satisfies the con-

straint (1.3).

Proof.

Ẽn+1e1 =
(
En −Xnv1v

T
1 0

)
e1

=
(

(Xn − UnRnV
T
n )e1 −Xnv1v

T
1 e1 0

)
=
(

x1 − UnRnV
T
n e1 −Xnv1v

T
1 e1 0

)
=
(

x1 − (Xn − En)e1 −Xnv1v
T
1 e1 0

)
=
(
Ene1 −Xnv1v

T
1 e1 0

)
.

Since in (2.2), we have that (
Vn v1

)
l = e1,

thus

Ẽn+1e1 =
(

(En −Xnv1v
T
1 )
(
Vn v1

)
l 0

)
=
(
Env1 −Xnv1 0

)
= 0.

Since, Ẽn+1e1 = Ẽn+1(:, 1) = 0, and

Ẽn+1

(
0 1

Vn+1 0

)
=
(

0 En+1

)( 0 1
Vn+1 0

)
= 0,

we have that En+1Vn+1 = 0. �

Here, we pursue not saving whole elements of En+1, but rather tracking the
value ‖En+1‖F which is achieved by computing

‖En+1‖F =

√
‖Ẽn+1‖2F − ‖Xnv1‖22.

The procedures described above for the sliding window algorithm are sum-
marized in Algorithm 1. Note that the values ‖E‖F and ‖Ē‖F are considered
as variables in Algorithm 1.



406 G. LEE

2.1. Computational complexity

For the data matrix X ∈ Rm×n, a computational complexity of a PCA
algorithm requires O(mn2 + n3) flops, thus the cost increases dramatically as
the size n increases. Typically, the most expensive operations in Algorithm
1 are simple matrix-matrix multiplications for updating Un in steps 5, which
costs O(mk2) flops approximately, and updating the decomposition error in
step 1 which costs O(mn). Therefore, the overall computational complexity of
Algorithm 1 takes around O(mn) flops only, and is much cheaper than that of
a typical PCA algorithm.

Algorithm 1 [Ū , Σ̄, V̄ , ‖Ē‖F ] = SlidingWindowSVD(U,Σ, V,X,x, ‖E‖F , ε)

1. Make the calls
[l,v1] = cgs orth(V, e1),
[d,uk+1] = cgs orth(U,Xv1),
[h,u1] = cgs orth(

(
Un uk+1

)
,x).

2. Find the orthogonal matrix Q1 which satisfies(
V v1 0
0 0 1

)
Q1 =

(
0 1

V̂ 0

)
,

and find P1 which satisfies, PT
1

 R d1 h1

0 d2 h2
0 0 h3

Q1 =

(
R̃ r̃

0 h̃3

)
,

where d =
(

d1 d2
)
, and h =

(
h1 h2 h3

)
.

3. Update the decomposition error as

‖Ē‖F =
√
‖E‖2F − ‖Xv1‖22.

4. Compute the SVD of the middle matrix such that

PT
2 R̃Q2 = Σ̂.

5. Set(
Û ū

)
=
(
U uk+1 u1

)
P1, Ū = ÛP2, Ū = Ū(:, 1 : k)

V̄ = V̂ Q2, V̄ = V̄ (:, 1 : k),
return Ū , R̄, V̄ and ‖Ē‖F .

3. Rank-one update algorithm

Since the typical rank-one update to the matrix will destroy the structure of
the SVD, we need a careful procedure to preserve the SVD form while updating.
Rewrite the equation (1.2) with a simplified form, such that

(3.1) Xn+1 = Xn + stT = UnΣnV
T
n + En + stT .

Here for (1.2), the vector s corresponds to (mn − mn+1), and the vector t
corresponds to e in our applications.



AN EFFICIENT ALGORITHM FOR SLIDING WINDOW BASED IPCA 407

First, we use two Gram-Schmidt orthogonalization to decompose s and t
such that

[̂s,uk+1] = cgs orth(Un, s),

[̂t,vk+1] = cgs orth(Vn, t),(3.2)

and we use the other Gram-Schmidt operation to decompose Xnvk+1 such that

(3.3) [g,uk+2] = cgs orth(
(
Un uk+1

)
, Xnvk+1).

Let gT =
(

gT
1 g2 g3

)T
, where g1 ∈ Rk, then we have a SVD form of Xn+1

in (3.1), such that
(3.4)

Xn+1 =
(
Un uk+1 uk+2

) Σn g1

0 g2
0 g3

+

(
ŝ
0

)
t̂T

( VT
n

vT
k+1

)
+En+1,

where En+1 is a new decomposition error that satisfies the constraint (1.3).

Proposition 3.1. The decomposition error En+1 in (3.4) satisfies the con-
straint En+1Vn+1 = 0.

Proof. The equation (3.4) is derived from

Xn+1 = UnΣnV
T
n + En+1 +Xnvk+1v

T
k+1 + stT .

Thus

En+1 = En −Xnvk+1v
T
k+1.

Then

En+1Vn+1 = (En −Xnvk+1v
T
k+1)

(
Vn vk+1

)
=
(
EnVn −Xnvk+1v

T
k+1Vn Envk+1 −Xnvk+1

)
.

Since EnVn = 0 and Vn ⊥ vk+1, the first element of En+1Vn+1 is 0, and the
second element is 0 as well, because

Envk+1 −Xnvk+1 = Envk+1 − (UnΣnV
T
n + En)vk+1 = 0.

Therefore, the equation (3.4) satisfies the constraint (1.3). �

The next step is to find the orthogonal matrices P3 and Q3 that make the
middle matrix in (3.4) diagonal as follows:

(3.5) PT
3

 Σn g1

0 g2
0 g3

+

(
ŝ
0

)
t̂T

Q3 =

(
Σn+1

0

)
,

where Σn+1 ∈ R(k+1)×(k+1) is a diagonal matrix. Similar to the idea in Section
2, we will not obtain En+1, and instead compute the value ‖En+1‖F which is
easily calculated by

‖En+1‖F =
√
‖En‖2F − ‖Xnvk+1‖22.



408 G. LEE

The final SVD of Xn+1 = Un+1Σn+1Vn+1 +En+1 after updating is given as
follows:

Un+1 =
(
Un uk+1 uk+2

)
P3,

Vn+1 =
(
Vn vk+1

)
Q3.

Since we know that the constraint ‖En+1‖F ≤ ε must hold, we will further
check a possible truncation of the small singular triplets from Xn+1 in (3.5).
Assume that Σn+1 = diag(σ1, . . . , σj), where j is a numerical rank of Xn+1,
and possibly among k − 1, k, k + 1 or even k + 2. By checking the condition√
σ2
j + ‖En+1‖2F ≤ ε iteratively, we can truncate Σn+1 and its corresponding

singular vectors Un+1(:, j) and Vn+1(:, j) until satisfying (1.3). Therefore, the
final SVD form of Xn+1 is given by

Un+1 = Un+1(:, 1 : j),

Vn+1 = Vn+1(:, 1 : j),

Σn+1 = Σn+1(1 : j, 1 : j),

and

‖En+1‖2F =

√√√√‖En+1‖2F +

j∑
i=k−1

σ2
i .

The procedure for rank-one update is summarized in Algorithm 2.
Similar to the case of sliding window based SVD update in Section 2.1, the

most time-consuming operation in Algorithm 2 is the computation of Xnvk+1

in step 1, which takes around O(mn) flops, and is still much cheaper than that
of a typical PCA algorithm.

4. Numerical experiments

This section presents experimental results that measure the performance
of the proposed algorithm. The experiments were run on an Intel Core i9
computer with 3.10GHz, and 32 GB memory. The test code were performed
using MATLAB version 9.3.0.713579 (R2017b).

We generate random matrices as a reference in order to verify the perfor-
mance of our algorithm. Specifically, because the data matrix is ill-conditioned
under many contexts, we created a random data matrix X ∈ Rm×n to be
ill-conditioned where its singular values range as

σi = e
−i
n log(d), 1 ≤ i ≤ n,

where the parameter d denotes the degree of the ill-posedness in X. Using the
data matrix X, we compared the execution time and decomposition error with
the following example cases.

Example 1. X ∈ R5000×500 is generated based on the procedure above. We
set d as 1.0e+ 5 to adjust the ill-posedness in X, and ε = 0.1‖X‖F . We chose



AN EFFICIENT ALGORITHM FOR SLIDING WINDOW BASED IPCA 409

Algorithm 2 [Û , Σ̂, V̂ , ‖Ê‖F ] = rankupdateSVD(U,Σ, V,X, s, t, ‖E‖F , ε)

1. Make the call

[t̂,vk+1] = cgs orth(V, t),
[ŝ,uk+1] = cgs orth(U, s),
[g,uk+2] = cgs orth(

(
U uk+1

)
, Xvk+1).

2. Find the orthogonal matrices P3 and Q3 such that

PT
3

 Σ g1

0 g2
0 g3

+

(
ŝ
0

)
t̂T

Q3 =

(
Σ̂
0

)
,

where Σ̂ is a diagonal matrix.

3. Update ‖Ê‖F =
√
‖E‖2F − ‖Xvk+1‖22.

4. Update Û =
(
U uk+1 uk+2

)
P3, and V̂ =

(
V vk+1

)
Q3.

5. For j = k + 2 : −1 : k − 1

If
√
σ2
k+1 + ‖Ê‖2F > ε

then break,

else Update ‖Ê‖F =
√
σ2
j + ‖Ê‖2F

end

6. Update Û = Û(:, 1 : j),

V̂ = V̂ (:, 1 : j),

and Σ̂ = Σ̂(1 : j, 1 : j),

return Û , Σ̂, V̂ and ‖Ê‖F .

Algorithm 3 [Û , Σ̂, V̂ , ‖Ê‖F ] = swIPCA(U,Σ, V,X,x, s, t, ‖E‖F , ε)

1. Make the call
[Ū , Σ̄, V̄ , ‖Ē‖F ] = SlidingWindowSVD(U,Σ, V,X,x, ‖E‖F , ε).

2. Make the call

[Û , Σ̂, V̂ , ‖Ê‖F ] = rankupdateSVD(Ū , Σ̄, V̄ , X, s, t, ‖Ē‖F , ε),
return Û , Σ̂, V̂ , ‖Ê‖F .

100 vectors from X(:, 401 : 500) to make a new arrived data x. To obtain the
initial SVD, we executed MATLAB’s “svd” command to X(:, 1 : 400).

Example 2. X ∈ R5000×1000 is generated based on the procedure above. We
set d as 1.0e+ 7 to adjust the ill-posedness in X, and ε = 0.1‖X‖F . We chose
100 vectors from X(:, 901 : 1000) to make a new arrived data x. To obtain the
initial SVD, we executed MATLAB’s “svd” command to X(:, 1 : 900).

Example 3. X ∈ R10000×500 is generated based on the procedure above. We
set d as 1.0e+ 7 to adjust the ill-posedness in X, and ε = 0.1‖X‖F . We chose



410 G. LEE

100 vectors from X(:, 401 : 500) to make a new arrived data x. To obtain the
initial SVD, we executed MATLAB’s “svd” command to X(:, 1 : 400).

After generating the data matrices, we split these as

X = Y1Σ1Z
T
1 + Y2Σ2Z

T
2 ,

where Σ1 = diag(σ1, . . . , σk), and Σ2 = diag(σk+1, . . . , σn), and we truncated
the unnecessary part Y2Σ2Z

T
2 from X. Note that we chose the initial truncation

level k satisfying

arg mink(0.9ε− ‖X − Y1Σ1Z
T
1 ‖F ).

We set the initial decomposition error as ‖E1‖F = ‖Σ2‖F . To evaluate the
performance of the proposed algorithm, we execute Matlab’s ‘svd’ function,
the well-known IPCA algorithm proposed by Weng et al. [8] (CCIPCA hence-
forth), and Algorithm 3 (swIPCA, henceforth). However, since CCIPCA only
considers covariance-free matrices, we first experiment the data matrix in Ex-
amples 1-3 without considering the zero-mean cases. Specifically, we compare
the the execution time and the subspace differences between the result from a
typical PCA algorithm and the other algorithms [7], which is defined as

relative error =

k∑
i=1

k∑
j=1

(ūT
i ūj − uT

i uj)
2,

where ū represent the eigenvectors generated from a typical PCA algorithm,
and u is calculated from swIPCA or CCIPCA.

Figure 1 depicts the relative errors and execution time from typical PCA
algorithm, CCIPCA, and swIPCA. Here, when we compute the update of the
covariance-free matrices in Examples 1-3 with swIPCA, we only use Algorithm
1. Figure 1 shows that swIPCA produces the fastest output among three
algorithms. Additionally, the relative errors from swIPCA are better than
those from CCIPCA, which means the eigenvectors computed from swIPCA
are closer to those from a typical PCA.

Figure 2, shows the comparison of relative errors and execution speed when
zero-mean matrices from Examples 1-3 are considered in each sliding window
step. In this experiment, we use Matlab’s ‘princomp’ function and swIPCA.
The relative errors to compare the accuracy of the results, are defined as

relative error = ‖X − UnΣnV
T
n ‖F .

Throughout the iterations, we can see that swIPCA achieved much faster ex-
ecution speed than Matlab’s ‘princomp’ function. The differences of relative
error are not significant. Figure 3 depicts the variation of the numerical rank,
and Figure 4 depicts the difference |‖X−UnΣnV

T
n ‖F −‖En‖F | with log10 scale

to measure how tracking the value of ‖En‖F is accurate as iterations proceed
in Example 1.



AN EFFICIENT ALGORITHM FOR SLIDING WINDOW BASED IPCA 411

(a) Example 1

(b) Example 2

(c) Example 3

Figure 1. Comparison of relative errors and execution time
among a typical PCA algorithm, CCIPCA, and swIPCA when
covariance-free data matrices are used.



412 G. LEE

(a) Example 1

(b) Example 2

(c) Example 3

Figure 2. Comparison of relative errors and execution time
between a typical PCA algorithm and swIPCA when zero-
mean matrices are used.



AN EFFICIENT ALGORITHM FOR SLIDING WINDOW BASED IPCA 413

0 10 20 30 40 50 60 70 80 90 100

t

95

96

97

98

99

100

101

102

103

104

105

ra
n
k

Figure 3. Variation of numerical rank when swIPCA is ap-
plied to the data matrix in Example 1.

Figure 4. Accuracy of ‖E‖F in each sliding window step
when swIPCA is applied to the data matrix in Example 1.

5. Conclusion

The computation of principal components from scratch at every iteration is
prohibitively expensive when the data matrix is frequently updated and down-
dated. To overcome the difficulties, we proposed the sliding window based
incremental principal component algorithm as a tool to determine approxi-
mate principal component. Specifically, the proposed method comprises two
procedure: the efficient updating and downdating algorithm of the singular
value decomposition, followed by the rank-one matrix update algorithm. The



414 G. LEE

experimental results show that the proposed algorithm achieves faster execu-
tion speed with no-significant decomposition error compared to the results for
typical principal component algorithms.

Acknowledgments. This work was supported by Hankuk University of For-
eign Studies Research Fund and National Research Foundation of Korea (NRF)
grant funded by the Korean government (2018R1C1B5085022).

References

[1] H. Abdi and L. J. Williams, Principal component analysis, Wiley Interdiscip. Rev. Com-

put. Stat. 2–4 (2010), pp. 433–459.

[2] R. Badeau, G. Richard, and B. David, Sliding window adaptive SVD algorithms, IEEE
Trans. Signal Process. 52 (2004), no. 1, 1–10. https://doi.org/10.1109/TSP.2003.

820069

[3] J. L. Barlow, A. Smoktunowicz, and H. Erbay, Improved Gram-Schmidt type downdating
methods, BIT 45 (2005), no. 2, 259–285. https://doi.org/10.1007/s10543-005-0015-2

[4] M. Brand, Fast low-rank modifications of the thin singular value decomposition, Linear

Algebra Appl. 415 (2006), no. 1, 20–30. https://doi.org/10.1016/j.laa.2005.07.021
[5] J. R. Bunch and C. P. Nielsen, Updating the singular value decomposition, Numer. Math.

31 (1978/79), no. 2, 111–129. https://doi.org/10.1007/BF01397471
[6] Y. Li, L. Xu, J. Morphett, and R. Jacobs, An integreted algorithm of incremental and

robust PCA, Proc. Int. Conf. on Image Processing (2003), 245–248.

[7] C. Pehlevan, T. Hu, and D. B. Chklovskii, A Hebbian/anti-Hebbian neural network for
linear subspace learning: a derivation from multidimensional scaling of streaming data,

Neural Comput. 27 (2015), no. 7, 1461–1495. https://doi.org/10.1162/neco_a_00745

[8] J. Weng, Y. Zhang, and W. S. Hwang, Candid covariance-free incremental principal
component analysis, IEEE Trans. Pattern Anal. Mach. Intell, 25–8 (2003), pp. 1034–

1040.

[9] H. Zhao, P. C. Yuen, and J. T. Kwok, A novel incremental principal component analysis
and its application for face recognition, IEEE Trans. on Sys. Man, and Cybernetics, 36–4

(2006), pp. 873–886.

Geunseop Lee
Division of Global Business and Technology

Hankuk University of Foreign Studies

Yongin 17035, Korea
Email address: geunseop.lee@hufs.ac.kr

https://doi.org/10.1109/TSP.2003.820069
https://doi.org/10.1109/TSP.2003.820069
https://doi.org/10.1007/s10543-005-0015-2
https://doi.org/10.1016/j.laa.2005.07.021
https://doi.org/10.1007/BF01397471
https://doi.org/10.1162/neco_a_00745

