1 |
J. L. Barlow, A. Smoktunowicz, and H. Erbay, Improved Gram-Schmidt type downdating methods, BIT 45 (2005), no. 2, 259-285. https://doi.org/10.1007/s10543-005-0015-2
DOI
|
2 |
M. Brand, Fast low-rank modifications of the thin singular value decomposition, Linear Algebra Appl. 415 (2006), no. 1, 20-30. https://doi.org/10.1016/j.laa.2005.07.021
DOI
|
3 |
J. R. Bunch and C. P. Nielsen, Updating the singular value decomposition, Numer. Math. 31 (1978/79), no. 2, 111-129. https://doi.org/10.1007/BF01397471
DOI
|
4 |
Y. Li, L. Xu, J. Morphett, and R. Jacobs, An integreted algorithm of incremental and robust PCA, Proc. Int. Conf. on Image Processing (2003), 245-248.
|
5 |
H. Abdi and L. J. Williams, Principal component analysis, Wiley Interdiscip. Rev. Comput. Stat. 2-4 (2010), pp. 433-459.
|
6 |
R. Badeau, G. Richard, and B. David, Sliding window adaptive SVD algorithms, IEEE Trans. Signal Process. 52 (2004), no. 1, 1-10. https://doi.org/10.1109/TSP.2003.820069
DOI
|
7 |
C. Pehlevan, T. Hu, and D. B. Chklovskii, A Hebbian/anti-Hebbian neural network for linear subspace learning: a derivation from multidimensional scaling of streaming data, Neural Comput. 27 (2015), no. 7, 1461-1495. https://doi.org/10.1162/neco_a_00745
DOI
|
8 |
J. Weng, Y. Zhang, and W. S. Hwang, Candid covariance-free incremental principal component analysis, IEEE Trans. Pattern Anal. Mach. Intell, 25-8 (2003), pp. 1034-1040.
DOI
|
9 |
H. Zhao, P. C. Yuen, and J. T. Kwok, A novel incremental principal component analysis and its application for face recognition, IEEE Trans. on Sys. Man, and Cybernetics, 36-4 (2006), pp. 873-886.
DOI
|