• Title/Summary/Keyword: Compton scattering

Search Result 54, Processing Time 0.031 seconds

Calibration-free real-time organic film thickness monitoring technique by reflected X-Ray fluorescence and compton scattering measurement

  • Park, Junghwan;Choi, Yong Suk;Kim, Junhyuck;Lee, Jeongmook;Kim, Tae Jun;Youn, Young-Sang;Lim, Sang Ho;Kim, Jong-Yun
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1297-1303
    • /
    • 2021
  • Most thickness measurement techniques using X-ray radiation are unsuitable in field processes involving fast-moving organic films. Herein, we propose a Compton scattering X-ray radiation method, which probes the light elements in organic materials, and a new simple, non-destructive, and non-contact calibration-free real-time film thickness measurement technique by setting up a bench-top X-ray thickness measurement system simulating a field process dealing with thin flexible organic films. The use of X-ray fluorescence and Compton scattering X-ray radiation reflectance signals from films in close contact with a roller produced accurate thickness measurements. In a high-thickness range, the contribution of X-ray fluorescence is negligible, whereas that of Compton scattering is negligible in a low-thickness range. X-ray fluorescence and Compton scattering show good correlations with the organic film thickness (R2 = 0.997 and 0.999 for X-ray fluorescence and Compton scattering, respectively, in the thickness range 0-0.5 mm). Although the sensitivity of X-ray fluorescence is approximately 4.6 times higher than that of Compton scattering, Compton scattering signals are useful for thick films (e.g., thicker than ca. 1-5 mm under our present experiment conditions). Thus, successful calibration-free thickness monitoring is possible for fast-moving films, as demonstrated in our experiments.

Analytic simulator and image generator of multiple-scattering Compton camera for prompt gamma ray imaging

  • Kim, Soo Mee
    • Biomedical Engineering Letters
    • /
    • v.8 no.4
    • /
    • pp.383-392
    • /
    • 2018
  • For prompt gamma ray imaging for biomedical applications and environmental radiation monitoring, we propose herein a multiple-scattering Compton camera (MSCC). MSCC consists of three or more semiconductor layers with good energy resolution, and has potential for simultaneous detection and differentiation of multiple radio-isotopes based on the measured energies, as well as three-dimensional (3D) imaging of the radio-isotope distribution. In this study, we developed an analytic simulator and a 3D image generator for a MSCC, including the physical models of the radiation source emission and detection processes that can be utilized for geometry and performance prediction prior to the construction of a real system. The analytic simulator for a MSCC records coincidence detections of successive interactions in multiple detector layers. In the successive interaction processes, the emission direction of the incident gamma ray, the scattering angle, and the changed traveling path after the Compton scattering interaction in each detector, were determined by a conical surface uniform random number generator (RNG), and by a Klein-Nishina RNG. The 3D image generator has two functions: the recovery of the initial source energy spectrum and the 3D spatial distribution of the source. We evaluated the analytic simulator and image generator with two different energetic point radiation sources (Cs-137 and Co-60) and with an MSCC comprising three detector layers. The recovered initial energies of the incident radiations were well differentiated from the generated MSCC events. Correspondingly, we could obtain a multi-tracer image that combined the two differentiated images. The developed analytic simulator in this study emulated the randomness of the detection process of a multiple-scattering Compton camera, including the inherent degradation factors of the detectors, such as the limited spatial and energy resolutions. The Doppler-broadening effect owing to the momentum distribution of electrons in Compton scattering was not considered in the detection process because most interested isotopes for biomedical and environmental applications have high energies that are less sensitive to Doppler broadening. The analytic simulator and image generator for MSCC can be utilized to determine the optimal geometrical parameters, such as the distances between detectors and detector size, thus affecting the imaging performance of the Compton camera prior to the development of a real system.

Preliminary Study of Performance Evaluation of a Dual-mode Compton Camera by Using Geant4 (Geant4 몬테칼로 전산모사 툴킷을 이용한 이중모드 컴프턴 카메라 최적화 설계 및 성능평가)

  • Park, Jin Hyung;Seo, Hee;Kim, Seoung Hoon;Kim, Young Soo;Kim, Chan Hyeong
    • Journal of Radiation Protection and Research
    • /
    • v.37 no.4
    • /
    • pp.191-196
    • /
    • 2012
  • A double-scattering type Compton camera which is appropriate to imaging a high-energy gamma source has been developed for nuclear material surveillance at Hanyang University. The double-scattering type Compton camera can provide high imaging resolution; however, it has disadvantage of relatively low imaging sensitivity than existing single-scattering type Compton camera. In this study, we introduce a novel concept of a dual-mode Compton camera which incorporates two different types of Compton camera, i.e., single- and double-scattering type. The dual-mode Compton camera can operate high-resolution mode and high-sensitivity mode in a single system. To maximize its performance, the geometrical configuration was optimized by using Geant4 Monte Carlo simulation toolkit. In terms of imaging sensitivity, high-sensitivity mode had higher sensitivity than high-resolution mode up to 100 times while high imaging resolution of the double-scattering Compton camera was maintained.

The Thickness Determination of Silicone Resin on Zinc Electroplated Steels using Compton Scattering (Compton 산란선을 이용한 아연계 전기도금강판 표면의 Slicone Resin Film 두께측정)

  • Jae Chun So;Do Hyung Lee
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.539-544
    • /
    • 1991
  • A method to determine the thickness of silicone resin film on zinc eletroplated steel using X-ray compton scattering was investigated. On the basis of the fact that compton scattering process predominates over photoelectric absorption for the light elements such as C, H, O and Si, the compton scattered line of RhK$_{\alpha}$ was used to determine the thickness of silicone resin. In this method, the standard calibration curve for thickness determination of silicone resin film was found to be linear in the range of 0.2~5.0 ${mu}$m film thickness. The analytical results agreed well with those obtained by the gravimetric method and the accuracy was found to be 0.22 ${mu}$m.

  • PDF

Detection of Second-Layer Corrosion in Aging Aircraft

  • Kim, Noh-Yu;Yang, Seun-Yong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.6
    • /
    • pp.591-602
    • /
    • 2009
  • The Compton backscatter technique has been applied to lap-joint in aircraft structure in order to determine mass loss due to exfoliative corrosion of the aluminum alloy sheet skin. The mass loss of each layer has been estimated from Compton backscatter A-scan including the aluminum sheet, the corrosion layer, and the sealant. A Compton backscattering imaging system has been also developed to obtain a cross-sectional profile of corroded lap-splices of aging aircraft using a specially designed slit-type camera. The camera is to focus on a small scattering volume inside the material from which the backscattered photons are collected by a collimated scintillator detector for interpretation of material characteristics. The cross section of the layered structure is scanned by moving the scattering volume through the thickness direction of the specimen. The theoretical model of the Compton scattering based on Boltzmann transport theory is presented for quantitative characterization of exfoliative corrosion through deconvolution procedure using a nonlinear least-square error minimization method. It produces practical information such as location and width of planar corrosion in layered structures of aircraft, which generally cannot be detected by conventional NDE techniques such as the ultrasonic method.

High-Performance Compton SPECT Using Both Photoelectric and Compton Scattering Events

  • Lee, Taewoong;Kim, Younghak;Lee, Wonho
    • Journal of the Korean Physical Society
    • /
    • v.73 no.9
    • /
    • pp.1393-1398
    • /
    • 2018
  • In conventional single-photon emission computed tomography (SPECT), only the photoelectric events in the detectors are used for image reconstruction. However, if the $^{131}I$ isotope, which emits high-energy radiations (364, 637, and 723 keV), is used in nuclear medicine, both photoelectric and Compton scattering events can be used for image reconstruction. The purpose of our work is to perform simulations for Compton SPECT by using the Geant4 application for tomographic emission (GATE). The performance of Compton SPECT is evaluated and compared with that of conventional SPECT. The Compton SPECT unit has an area of $12cm{\times}12cm$ with four gantry heads. Each head is composed of a 2-cm tungsten collimator and a $40{\times}40$ array of CdZnTe (CZT) crystals with a $3{\times}3mm^2$ area and a 6-mm thickness. Compton SPECT can use not only the photoelectric effect but also the Compton scattering effect for image reconstruction. The correct sequential order of the interactions used for image reconstruction is determined using the angular resolution measurement (ARM) method and the energies deposited in each detector. In all the results of simulations using spherical volume sources of various diameters, the reconstructed images of Compton SPECT show higher signal-to-noise ratios (SNRs) without degradation of the image resolution when compared to those of conventional SPECT because the effective count for image reconstruction is higher. For a Derenzo-like phantom, the reconstructed images for different modalities are compared by visual inspection and by using their projected histograms in the X-direction of the reconstructed images.

A New Approach on the Correction for Compton Escape Component in X-Ray Unfolding Algorithm

  • Kim, Soon-Young;Kim, Jong-Kyung
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05a
    • /
    • pp.925-930
    • /
    • 1995
  • A new approach on the correction for Compton escape component in X-ray unfolding algorithm was investigated to obtain more accurate X-ray source spectrum. The X-ray detector used in this study was a planar type HPGe detector(EG&G ORTEC, GLP-32340/13-P-LP) whose energy response has been blown and ISO narrow beam series were employed as source spectrum. At lower energy Part of measured X-ray spectrum including the correction for Compton escape component more accurate unfolded spectrum was obtained by letting down the starting energy level of the collection in existing spectrum correction procedure to consider multiple scattering effects. It is, from this study, concluded that accurate correction for Compton escape component is needed in X-ray unfolding procedure since Compton scattering becomes more important as incident X-ray energies increase.

  • PDF

Detection of Second-Layer Corrosion in Aging Aircraft Fuselage

  • Kim, Noh-Yu;Achenbach, J.D.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.6
    • /
    • pp.417-426
    • /
    • 2006
  • A Digital X-ray imaging system using Compton backscattering has been developed to obtain a cross-sectional profile and mass loss of corroded lap-splices of aging aircraft from density variation. A slit-type camera was designed to focus on a small scattering volume inside the material, from which the backscattered photons are collected by a collimated scintillator detector for interpretation of material characteristics. The cross section of the lap-joint is scanned by moving the scattering volume through the thickness direction of the specimen. The mass loss of each layer has been estimated from a Compton backscatter A-scan to obtain the thickness of each layer including the aluminum sheet, the corrosion layer and the sealant. Quantitative information such as location and width of planar corrosion in the lap splices of fuselages is obtained by deconvolution using a nonlinear least-square error minimization method(BFGS method): A simple reconstruction model is also introduced to overcome distortion of the Compton backscatter data due to attenuation effects attributed to beam hardening and quantum noise.

Study of 4π Compton Suppression Spectrometer by Monte Carlo Simulation (몬테카를로 시뮬레이션을 통한 4π 컴프턴 억제 분광기 연구)

  • Jang, Eun-Sung;Lee, Hyo-Yeong
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.3
    • /
    • pp.123-129
    • /
    • 2017
  • Compton suppression apparatus using the Compton scattering response, by inhibiting part of the spectrum Compton continuum Compton continuum in the area of the peak analysis of the gamma rays that enables a clearer device. In order to find out the geometry structure of high-purity germanium detector(HPGe) -NaI(TI) and to optimize the effect of movement, Monte Carlo simulation was used to grasp the behavioral characteristics of Compton suppression and compare several layout structures. And applied to the cylinder beaker used for the environmental measurement by using the efficiency according to the distance. For the low-energy source such as 81 keV, the Compton continuum is scarcely developed and the suppression effect is also insignificant because the scattering cross-section of the Compton effect is relatively low. In the spectrum for the remaining energy, it can be seen that the Compton continuum part is suppressed in a certain energy range. Compton suppression effect was not significantly different from positional shift. average reduction factor(ARF) value was about 1.08 for 81 keV and about 1.23 for 1332.4keV energy at the highest value. It can be seen that suppression over the Compton continuum region of the energy spectrum is a more appropriate arrangement. Therefore, it can be applied to various environmental sample measurement through optimized structure.

A GRADIENT-T SZE

  • HATTORI MAKOTO;OKABE NOBUHIRO
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.543-546
    • /
    • 2004
  • The inverse Compton scattering of the cosmic microwave background (CMB) radiation with electrons in the intracluster medium which has a temperature gradient, was examined by the third-order perturbation theory of the Compton scattering. A new type of the spectrum distortion of the CMB was found and named as gradient T Sunyaev-Zel'dovich effect (gradT SZE). The spectrum has an universal shape. There is a zero distortion point, the cross over frequency, at 326GHz. When the hotter region locates closer to an observer, the intensity becomes brighter than the CMB in the frequency region lower than the cross over frequency and fainter than the CMB in the frequency region higher than the cross over frequency. When the cooler region locates closer to an observer, the distorted part of the spectrum has an opposite sign to the above case. The amplitude of the spectrum distortion does not de-pend on the electron density and depends on the heat conductivity and the total temperature variation along a line of sight. Therefore, the gradT SZE provides an unique opportunity to measure thermally nonequilibrium electron momentum distribution function in the ICM and combined with the X-ray measurements of the electron temperature distribution provides an opportunity of direct measurement of the heat conductivity in the ICM.