Browse > Article
http://dx.doi.org/10.1016/j.net.2020.09.018

Calibration-free real-time organic film thickness monitoring technique by reflected X-Ray fluorescence and compton scattering measurement  

Park, Junghwan (Nuclear Chemistry Research Team, Korea Atomic Energy Research Institute)
Choi, Yong Suk (Nuclear Chemistry Research Team, Korea Atomic Energy Research Institute)
Kim, Junhyuck (Nuclear Chemistry Research Team, Korea Atomic Energy Research Institute)
Lee, Jeongmook (Nuclear Chemistry Research Team, Korea Atomic Energy Research Institute)
Kim, Tae Jun (Nuclear Chemistry Research Team, Korea Atomic Energy Research Institute)
Youn, Young-Sang (Department of Chemistry, Yeungnam University)
Lim, Sang Ho (Nuclear Chemistry Research Team, Korea Atomic Energy Research Institute)
Kim, Jong-Yun (Nuclear Chemistry Research Team, Korea Atomic Energy Research Institute)
Publication Information
Nuclear Engineering and Technology / v.53, no.4, 2021 , pp. 1297-1303 More about this Journal
Abstract
Most thickness measurement techniques using X-ray radiation are unsuitable in field processes involving fast-moving organic films. Herein, we propose a Compton scattering X-ray radiation method, which probes the light elements in organic materials, and a new simple, non-destructive, and non-contact calibration-free real-time film thickness measurement technique by setting up a bench-top X-ray thickness measurement system simulating a field process dealing with thin flexible organic films. The use of X-ray fluorescence and Compton scattering X-ray radiation reflectance signals from films in close contact with a roller produced accurate thickness measurements. In a high-thickness range, the contribution of X-ray fluorescence is negligible, whereas that of Compton scattering is negligible in a low-thickness range. X-ray fluorescence and Compton scattering show good correlations with the organic film thickness (R2 = 0.997 and 0.999 for X-ray fluorescence and Compton scattering, respectively, in the thickness range 0-0.5 mm). Although the sensitivity of X-ray fluorescence is approximately 4.6 times higher than that of Compton scattering, Compton scattering signals are useful for thick films (e.g., thicker than ca. 1-5 mm under our present experiment conditions). Thus, successful calibration-free thickness monitoring is possible for fast-moving films, as demonstrated in our experiments.
Keywords
Organic film; X-ray fluorescence; Compton scattering; X-ray radiation; Thickness;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Jia, S. Gowrisanker, G.K. Pant, R.M. Wallace, B.E. Gnade, Effect of poly (3-hexylthiophene) film thickness on organic thin film transistor properties, J. Vac. Sci. Technol. A Vacuum, Surf. Film. 24 (2006) 1228-1232, https://doi.org/10.1116/1.2202858.   DOI
2 P. Peumans, A. Yakimov, S.R. Forrest, Small molecular weight organic thin-film photodetectors and solar cells, J. Appl. Phys. 93 (2003) 3693-3723, https://doi.org/10.1063/1.1534621.   DOI
3 C.D. Dimitrakopoulos, P.R.L. Malenfant, Organic thin film transistors for large area electronics, Adv. Mater. 14 (2002) 99-117, https://doi.org/10.1002/1521-4095(20020116)14:2<99::AID-ADMA99>3.0.CO;2-9.   DOI
4 S. Bordawekar, A. Chanda, A.M. Daly, A.W. Garrett, J.P. Higgins, M.A. LaPack, T.D. Maloney, J. Morgado, S. Mukherjee, J.D. Orr, G.L. Reid, B.-S. Yang, H.W. Ward, Industry perspectives on process analytical technology: tools and applications in API manufacturing, Org. Process Res. Dev. 19 (2015) 1174-1185, https://doi.org/10.1021/acs.oprd.5b00088.   DOI
5 S.W. Song, J. Kim, C. Eum, Y. Cho, C.R. Park, Y.-A. Woo, H.M. Kim, H. Chung, Hyperspectral Raman line mapping as an effective tool to monitor the coating thickness of pharmaceutical tablets, Anal. Chem. 91 (2019) 5810-5816, https://doi.org/10.1021/acs.analchem.9b00047.   DOI
6 J. Workman, D.J. Veltkamp, S. Doherty, B.B. Anderson, K.E. Creasy, M. Koch, J.F. Tatera, A.L. Robinson, L. Bond, L.W. Burgess, G.N. Bokerman, A.H. Ullman, G.P. Darsey, F. Mozayeni, J.A. Bamberger, M.S. Greenwood, Process analytical chemistry, Anal. Chem. 71 (1999) 121-180, https://doi.org/10.1021/a1990007s.   DOI
7 M.H. Ali, A. Rabhi, A. El Hajjaji, G.M. Tina, Real time fault detection in photovoltaic systems, Energy Procedia 111 (2017) 914-923, https://doi.org/10.1016/j.egypro.2017.03.254.   DOI
8 C.D. Dimitrakopoulos, D.J. Mascaro, Organic thin-film transistors: a review of recent advances, IBM J. Res. Dev. 45 (2001) 11-27, https://doi.org/10.1147/rd.451.0011.   DOI
9 K.A. Bakeev (Ed.), Process Analytical Technology, John Wiley & Sons, Chichester, UK, 2010, https://doi.org/10.1002/9780470689592.
10 M. Birkholz, Thin Film Analysis by X-Ray Scattering, John Wiley & Sons, Darmstadt, Germany, 2006.
11 O. Durand, V. Berger, R. Bisaro, A. Bouchier, A. De Rossi, X. Marcadet, I. Prevot, Determination of thicknesses and interface roughnesses of GaAs-based and InAs/AlSb-based heterostructures by X-ray reflectometry, Mater. Sci. Semicond. Process. 4 (2001) 327-330, https://doi.org/10.1016/S1369-8001(00)00103-7.   DOI
12 P. Fenter, F. Schreiber, L. Zhou, P. Eisenberger, S. Forrest, In situ studies of morphology, strain, and growth modes of a molecular organic thin film, Phys. Rev. B Condens. Matter 56 (1997) 3046-3053, https://doi.org/10.1103/PhysRevB.56.3046.   DOI
13 P.V. Pesavento, K.P. Puntambekar, C.D. Frisbie, J.C. McKeen, P.P. Ruden, Film and contact resistance in pentacene thin-film transistors: dependence on film thickness, electrode geometry, and correlation with hole mobility, J. Appl. Phys. 99 (2006), 094504, https://doi.org/10.1063/1.2197033.   DOI
14 J.J. Allport, N.L. Brouwer, R.A. Kramer, Backscatter/transmission X-ray thickness gauge, NDT Int. 20 (1987) 217-223, https://doi.org/10.1016/0308-9126(87)90244-6.   DOI
15 M. Yasaka, X-ray thin-film measurement techniques, Rigaku J 26 (2010) 1-9.
16 H. Okada, M. Shibata, T. Echigo, S. Naka, H. Onnagawa, Film Thickness Measuring Method and Measuring Apparatus for Organic Thin Film for Use in Organic Electroluminesce Device, US6992781B2, 2006.
17 J.Y. Kim, Y.S. Choi, Y.J. Park, K. Song, S.H. Jung, E.M.A. Hussein, Thickness measurement of organic films using Compton scattering of characteristic Xrays, Appl. Radiat. Isot. 69 (2011) 1241-1245, https://doi.org/10.1016/j.apradiso.2011.03.048.   DOI
18 Y.S. Choi, J.-Y. Kim, S.B. Yoon, K. Song, Y.J. Kim, Determination of water content in silica nanopowder using wavelength-dispersive X-ray fluorescence spectrometer, Microchem. J. 99 (2011) 332-338, https://doi.org/10.1016/j.microc.2011.06.003.   DOI
19 J.A. Bearden, A.F. Burr, Reevaluation of X-ray atomic energy levels, Rev. Mod. Phys. 39 (1967) 125-142, https://doi.org/10.1103/RevModPhys.39.125.   DOI
20 C. Fiorini, A. Gianoncelli, A. Longoni, F. Zaraga, Determination of the thickness of coatings by means of a new XRF spectrometer, X Ray Spectrom. 31 (2002) 92-99, https://doi.org/10.1002/xrs.550.   DOI
21 AMPTEK, X-123CdTe complete X-ray & gamma ray spectrometer, (n.d.). https://www.amptek.com/products/cdte-x-ray-and-gamma-ray-detectors/x123-cdte-complete-x-ray-gamma-ray-spectrometer-with-cdte-detector (accessed August 23, 2020).
22 Y.S. Choi, J. Hwang, J.-Y. Kim, On-line and real-time analysis of moisture content in activated carbon powder by X-ray scattering technique, Asian J. Chem. 26 (2014) 4067-4069, https://doi.org/10.14233/ajchem.2014.17715.   DOI
23 H.A. van Sprang, M.H.J. Bekkers, Determination of light elements using x-ray spectrometry. Part Idanalytical implications of using scattered tube lines, X Ray Spectrom. 27 (1998) 31-36, https://doi.org/10.1002/(SICI)1097-4539(199801/02)27:1<31::AID-XRS245>3.0.CO;2-#.   DOI