DOI QR코드

DOI QR Code

Study of 4π Compton Suppression Spectrometer by Monte Carlo Simulation

몬테카를로 시뮬레이션을 통한 4π 컴프턴 억제 분광기 연구

  • Jang, Eun-Sung (Department of Nuclear physics and Radiation Technology Research Center, Pusan National University) ;
  • Lee, Hyo-Yeong (Department of Radiological Science, Dong Eui University)
  • 장은성 (부산대학교 핵물리방사선기술연구소) ;
  • 이효영 (동의대학교 방사선학과)
  • Received : 2017.04.17
  • Accepted : 2017.06.30
  • Published : 2017.06.30

Abstract

Compton suppression apparatus using the Compton scattering response, by inhibiting part of the spectrum Compton continuum Compton continuum in the area of the peak analysis of the gamma rays that enables a clearer device. In order to find out the geometry structure of high-purity germanium detector(HPGe) -NaI(TI) and to optimize the effect of movement, Monte Carlo simulation was used to grasp the behavioral characteristics of Compton suppression and compare several layout structures. And applied to the cylinder beaker used for the environmental measurement by using the efficiency according to the distance. For the low-energy source such as 81 keV, the Compton continuum is scarcely developed and the suppression effect is also insignificant because the scattering cross-section of the Compton effect is relatively low. In the spectrum for the remaining energy, it can be seen that the Compton continuum part is suppressed in a certain energy range. Compton suppression effect was not significantly different from positional shift. average reduction factor(ARF) value was about 1.08 for 81 keV and about 1.23 for 1332.4keV energy at the highest value. It can be seen that suppression over the Compton continuum region of the energy spectrum is a more appropriate arrangement. Therefore, it can be applied to various environmental sample measurement through optimized structure.

Compton suppression system은 스펙트럼에서 Compton continuum으로 존재하는 영역을 억제하는 장치 이다. 본 연구에서는 HPGe-NaI(TI)의 기하학적인 구조 파악 및 이동에 따른 이 때 그 효과를 최적화 할 수 있는 배치구조를 찾기 위하여, Monte Carlo simulation을 통해 Compton suppression의 행태적 특성을 파악하고, 몇 가지 배치구조에 대한 비교를 해보았다. 또한 거리에 따른 효율을 이용하여 환경 측정에 사용되는 실린더 비커에 적용해 보았다. ARF 값은 81.1 keV의 경우 약 1.65, 1332.4 에너지의 경우 약 1.9 정도로 나타내는 것을 확인할 수 있다. NaI(Tl) 검출기들의 위치 이동에 따라 특정한 영역에서 suppression이 일어나는 확인할 수 있다. Compton suppression system 구성의 목적에 비추어 볼 때, 결과 에너지 스펙트럼의 Compton continuum 영역 전반에 걸쳐 suppression이 이루어지는 것이 더욱 적절한 배치구조가 됨을 알 수 있다. 따라서 최적화된 구조를 통해 다양한 환경시료 측정에 적용할 수 있음을 확인 하였다.

Keywords

References

  1. G. F. Knoll, Radiation Detection and Measurement, John Wiley & Sons, Inc, 3rd ed, New York, pp. 428, 2000.
  2. Lowe .Lilly Kiang et al. "A Study on T-shape Compton Suppression Spectrometer by Monte Carlo Simulation", Nuclear Instruments and Methods in Physics Research A, Vol. 327, pp. 427, 1993. https://doi.org/10.1016/0168-9002(93)90708-P
  3. Ceta. Michael et al, "Monte Carlo Simulation of Complex Germanium Detector Systems and Compton Suppression Spectrometers", Nuclear Instruments and Method in Physics Research A, Vol. 251, pp. 119, 1986. https://doi.org/10.1016/0168-9002(86)91158-7
  4. "Compton Suppression. Made Easy", Canberra Application Note, AN-D-8901.
  5. Fiat. Slivan. Jack. Mill, Fernandez-Varea, J. Sempau, PENELOPE. A code system for Monte Carlo simulation of electron and photon transport. in: Workshop Proceeding, Issy-les Moulineaux, France, pp. 7-10 July, 2003.
  6. Bar'o Juie., J. Sempau, Ja .Mack. Fern'andez-Varea and F. Salvat , "PENELOPE: an algorithm for Monte Carlo simulation of the penetration and energy loss of electrons and positrons in matter", Nuclear. Instrument. Meth. B 100, pp. 31-46. 1995. https://doi.org/10.1016/0168-583X(95)00349-5
  7. E. S. Jang, B. S. Chang, "A Germanium Detector Structure PENELOPE Characteristic Analysis by Computer Simulation", Journal of Korea Society of Radiology, Vol. 2, pp. 73-77, 2015.
  8. Debertin, Kelsa., Helmer, Rui. Guo., ${\gamma}$- and X-ray spectrometer with semiconductor detectors, North Holland, Amsterdam, 1988.
  9. Koren. M, Martincic, Radiation. Measurements.
  10. Measurement of total-peak-peak ratio of a semiconductor gamma-ray detector. Nuclear. 1996.
  11. G. F. Knoll, Radiation Detection and Measurement, John Wiley & Sons, Inc., 3rd ed., New York, pp. 51, 2000.
  12. Mc. Namara A.L, Heijnis H., Fierro D, Reinhard MI. The determination of the efficiency of a Compton suppressed HPGe detector using Monte Carlo simulations. J. Environment. Radioactivity. No. 106, pp. 1-7, 2012..
  13. M. Tsutsumi, T. Oishi, N. Kinouchi, R. Sakamoto and M. Yoshida, "Design of an anti-Compton Spectrometer for Low-level Radioactivive Wastes using Monte Carlo Techniques", J. Nucl. Sci. & Tech. Vol. 39, No. 9, pp. 957-963. 2002. https://doi.org/10.1080/18811248.2002.9715282