DOI QR코드

DOI QR Code

Calibration-free real-time organic film thickness monitoring technique by reflected X-Ray fluorescence and compton scattering measurement

  • Park, Junghwan (Nuclear Chemistry Research Team, Korea Atomic Energy Research Institute) ;
  • Choi, Yong Suk (Nuclear Chemistry Research Team, Korea Atomic Energy Research Institute) ;
  • Kim, Junhyuck (Nuclear Chemistry Research Team, Korea Atomic Energy Research Institute) ;
  • Lee, Jeongmook (Nuclear Chemistry Research Team, Korea Atomic Energy Research Institute) ;
  • Kim, Tae Jun (Nuclear Chemistry Research Team, Korea Atomic Energy Research Institute) ;
  • Youn, Young-Sang (Department of Chemistry, Yeungnam University) ;
  • Lim, Sang Ho (Nuclear Chemistry Research Team, Korea Atomic Energy Research Institute) ;
  • Kim, Jong-Yun (Nuclear Chemistry Research Team, Korea Atomic Energy Research Institute)
  • Received : 2020.07.10
  • Accepted : 2020.09.14
  • Published : 2021.04.25

Abstract

Most thickness measurement techniques using X-ray radiation are unsuitable in field processes involving fast-moving organic films. Herein, we propose a Compton scattering X-ray radiation method, which probes the light elements in organic materials, and a new simple, non-destructive, and non-contact calibration-free real-time film thickness measurement technique by setting up a bench-top X-ray thickness measurement system simulating a field process dealing with thin flexible organic films. The use of X-ray fluorescence and Compton scattering X-ray radiation reflectance signals from films in close contact with a roller produced accurate thickness measurements. In a high-thickness range, the contribution of X-ray fluorescence is negligible, whereas that of Compton scattering is negligible in a low-thickness range. X-ray fluorescence and Compton scattering show good correlations with the organic film thickness (R2 = 0.997 and 0.999 for X-ray fluorescence and Compton scattering, respectively, in the thickness range 0-0.5 mm). Although the sensitivity of X-ray fluorescence is approximately 4.6 times higher than that of Compton scattering, Compton scattering signals are useful for thick films (e.g., thicker than ca. 1-5 mm under our present experiment conditions). Thus, successful calibration-free thickness monitoring is possible for fast-moving films, as demonstrated in our experiments.

Keywords

Acknowledgement

This research was supported by the National Research Foundation of Korea funded by the Korean government (Ministry of Science and ICT) (grant nos. 2017M2A8A5014754 and 2019M1A7A1A02085179).

References

  1. K.A. Bakeev (Ed.), Process Analytical Technology, John Wiley & Sons, Chichester, UK, 2010, https://doi.org/10.1002/9780470689592.
  2. S. Bordawekar, A. Chanda, A.M. Daly, A.W. Garrett, J.P. Higgins, M.A. LaPack, T.D. Maloney, J. Morgado, S. Mukherjee, J.D. Orr, G.L. Reid, B.-S. Yang, H.W. Ward, Industry perspectives on process analytical technology: tools and applications in API manufacturing, Org. Process Res. Dev. 19 (2015) 1174-1185, https://doi.org/10.1021/acs.oprd.5b00088.
  3. S.W. Song, J. Kim, C. Eum, Y. Cho, C.R. Park, Y.-A. Woo, H.M. Kim, H. Chung, Hyperspectral Raman line mapping as an effective tool to monitor the coating thickness of pharmaceutical tablets, Anal. Chem. 91 (2019) 5810-5816, https://doi.org/10.1021/acs.analchem.9b00047.
  4. J. Workman, D.J. Veltkamp, S. Doherty, B.B. Anderson, K.E. Creasy, M. Koch, J.F. Tatera, A.L. Robinson, L. Bond, L.W. Burgess, G.N. Bokerman, A.H. Ullman, G.P. Darsey, F. Mozayeni, J.A. Bamberger, M.S. Greenwood, Process analytical chemistry, Anal. Chem. 71 (1999) 121-180, https://doi.org/10.1021/a1990007s.
  5. M.H. Ali, A. Rabhi, A. El Hajjaji, G.M. Tina, Real time fault detection in photovoltaic systems, Energy Procedia 111 (2017) 914-923, https://doi.org/10.1016/j.egypro.2017.03.254.
  6. C.D. Dimitrakopoulos, D.J. Mascaro, Organic thin-film transistors: a review of recent advances, IBM J. Res. Dev. 45 (2001) 11-27, https://doi.org/10.1147/rd.451.0011.
  7. C.D. Dimitrakopoulos, P.R.L. Malenfant, Organic thin film transistors for large area electronics, Adv. Mater. 14 (2002) 99-117, https://doi.org/10.1002/1521-4095(20020116)14:2<99::AID-ADMA99>3.0.CO;2-9.
  8. P. Peumans, A. Yakimov, S.R. Forrest, Small molecular weight organic thin-film photodetectors and solar cells, J. Appl. Phys. 93 (2003) 3693-3723, https://doi.org/10.1063/1.1534621.
  9. P. Fenter, F. Schreiber, L. Zhou, P. Eisenberger, S. Forrest, In situ studies of morphology, strain, and growth modes of a molecular organic thin film, Phys. Rev. B Condens. Matter 56 (1997) 3046-3053, https://doi.org/10.1103/PhysRevB.56.3046.
  10. P.V. Pesavento, K.P. Puntambekar, C.D. Frisbie, J.C. McKeen, P.P. Ruden, Film and contact resistance in pentacene thin-film transistors: dependence on film thickness, electrode geometry, and correlation with hole mobility, J. Appl. Phys. 99 (2006), 094504, https://doi.org/10.1063/1.2197033.
  11. H. Jia, S. Gowrisanker, G.K. Pant, R.M. Wallace, B.E. Gnade, Effect of poly (3-hexylthiophene) film thickness on organic thin film transistor properties, J. Vac. Sci. Technol. A Vacuum, Surf. Film. 24 (2006) 1228-1232, https://doi.org/10.1116/1.2202858.
  12. J.J. Allport, N.L. Brouwer, R.A. Kramer, Backscatter/transmission X-ray thickness gauge, NDT Int. 20 (1987) 217-223, https://doi.org/10.1016/0308-9126(87)90244-6.
  13. O. Durand, V. Berger, R. Bisaro, A. Bouchier, A. De Rossi, X. Marcadet, I. Prevot, Determination of thicknesses and interface roughnesses of GaAs-based and InAs/AlSb-based heterostructures by X-ray reflectometry, Mater. Sci. Semicond. Process. 4 (2001) 327-330, https://doi.org/10.1016/S1369-8001(00)00103-7.
  14. C. Fiorini, A. Gianoncelli, A. Longoni, F. Zaraga, Determination of the thickness of coatings by means of a new XRF spectrometer, X Ray Spectrom. 31 (2002) 92-99, https://doi.org/10.1002/xrs.550.
  15. M. Birkholz, Thin Film Analysis by X-Ray Scattering, John Wiley & Sons, Darmstadt, Germany, 2006.
  16. M. Yasaka, X-ray thin-film measurement techniques, Rigaku J 26 (2010) 1-9.
  17. H. Okada, M. Shibata, T. Echigo, S. Naka, H. Onnagawa, Film Thickness Measuring Method and Measuring Apparatus for Organic Thin Film for Use in Organic Electroluminesce Device, US6992781B2, 2006.
  18. Y.S. Choi, J.-Y. Kim, S.B. Yoon, K. Song, Y.J. Kim, Determination of water content in silica nanopowder using wavelength-dispersive X-ray fluorescence spectrometer, Microchem. J. 99 (2011) 332-338, https://doi.org/10.1016/j.microc.2011.06.003.
  19. J.Y. Kim, Y.S. Choi, Y.J. Park, K. Song, S.H. Jung, E.M.A. Hussein, Thickness measurement of organic films using Compton scattering of characteristic Xrays, Appl. Radiat. Isot. 69 (2011) 1241-1245, https://doi.org/10.1016/j.apradiso.2011.03.048.
  20. J.A. Bearden, A.F. Burr, Reevaluation of X-ray atomic energy levels, Rev. Mod. Phys. 39 (1967) 125-142, https://doi.org/10.1103/RevModPhys.39.125.
  21. AMPTEK, X-123CdTe complete X-ray & gamma ray spectrometer, (n.d.). https://www.amptek.com/products/cdte-x-ray-and-gamma-ray-detectors/x123-cdte-complete-x-ray-gamma-ray-spectrometer-with-cdte-detector (accessed August 23, 2020).
  22. Y.S. Choi, J. Hwang, J.-Y. Kim, On-line and real-time analysis of moisture content in activated carbon powder by X-ray scattering technique, Asian J. Chem. 26 (2014) 4067-4069, https://doi.org/10.14233/ajchem.2014.17715.
  23. H.A. van Sprang, M.H.J. Bekkers, Determination of light elements using x-ray spectrometry. Part Idanalytical implications of using scattered tube lines, X Ray Spectrom. 27 (1998) 31-36, https://doi.org/10.1002/(SICI)1097-4539(199801/02)27:1<31::AID-XRS245>3.0.CO;2-#.