Browse > Article
http://dx.doi.org/10.5303/JKAS.2004.37.5.543

A GRADIENT-T SZE  

HATTORI MAKOTO (Astronomical Institute, Graduate School of Science, Tohoku University)
OKABE NOBUHIRO (Astronomical Institute, Graduate School of Science, Tohoku University)
Publication Information
Journal of The Korean Astronomical Society / v.37, no.5, 2004 , pp. 543-546 More about this Journal
Abstract
The inverse Compton scattering of the cosmic microwave background (CMB) radiation with electrons in the intracluster medium which has a temperature gradient, was examined by the third-order perturbation theory of the Compton scattering. A new type of the spectrum distortion of the CMB was found and named as gradient T Sunyaev-Zel'dovich effect (gradT SZE). The spectrum has an universal shape. There is a zero distortion point, the cross over frequency, at 326GHz. When the hotter region locates closer to an observer, the intensity becomes brighter than the CMB in the frequency region lower than the cross over frequency and fainter than the CMB in the frequency region higher than the cross over frequency. When the cooler region locates closer to an observer, the distorted part of the spectrum has an opposite sign to the above case. The amplitude of the spectrum distortion does not de-pend on the electron density and depends on the heat conductivity and the total temperature variation along a line of sight. Therefore, the gradT SZE provides an unique opportunity to measure thermally nonequilibrium electron momentum distribution function in the ICM and combined with the X-ray measurements of the electron temperature distribution provides an opportunity of direct measurement of the heat conductivity in the ICM.
Keywords
clusters of galaxies; Compton scattering; conduction; magnetic fields; plasma;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Okabe, N. & Hattori, M. 2004, ApJ, submitted
2 Ramani,A . & Laval, G. 1978, Phys. Fluids, 21, 980   DOI
3 Sarazin, C. L., X-ray emission from Clusters of Galaxies (Cambridge: Cambridge Univ. Press, 1988)
4 Shibata, R, et al. 2001, ApJ, 549, 228   DOI   ScienceOn
5 Spitzer, L. Jr. 1956, Physics of Fully Ionized Gases (New York, Interscience)
6 Sunyaev, R. A. & Zel'dovich, Ya. B. 1972, Corn. Ap. Sp. Phys., 4, 173
7 Sunyaev, R. A. & Zel'dovich, Ya. B. 1980, MNRAS, 190, 413   DOI
8 Blanton, E. L., Sarazin, C. L., McNamara, B. R.,Wise, M. W. 2001, ApJ, 558, L15   DOI   ScienceOn
9 Birkinshaw, M. 1999, Phys. Rep., 310, 97   DOI   ScienceOn
10 Cowie, L. L. & McKee,C.F. 1977, ApJ, 211, 135   DOI
11 Ettori, S. & Fabian, A. C. 2000, MNRAS, 317, L57   DOI   ScienceOn
12 Vikhlinin, A., Markevitch, M. & Murray, S. S. 2001, ApJ, 549, L47   DOI   ScienceOn
13 Takizawa, M. 1999, ApJ, 520, 514   DOI   ScienceOn
14 McNamara, B. R et al. 2000, ApJ, 534, L135   DOI
15 Okabe, N. & Hattori, M. 2003, ApJ, 599, 964   DOI   ScienceOn
16 Watanabe, M., et al. 1999, ApJ, bf 527, 80   DOI   ScienceOn
17 Zakamska, N. & Narayan, R 2003, ApJ, 582, 162   DOI   ScienceOn
18 Fabian, A. C. et al. 2000, MNRAS, 318, L65   DOI   ScienceOn
19 Fabian, A. C. et al. 2001, MNRAS, 321, L33   DOI   ScienceOn
20 Fujita, Y. et al. 2004, ApJ, in press
21 Hattori, M., Kneib, J.-P. & Makino, N. 1999, Prog. Theor. Phys. Suppl., 133, 1   DOI
22 Hattori, M. & Umetsu, K. 2000, ApJ, 533, 84   DOI   ScienceOn
23 Kaastra, J. S. et al. 2004, A&A, 413, 415   DOI   ScienceOn
24 Hattori, M. & Okabe, N. 2004, submitted to ApJ
25 Hu,W., Scott, D. & Silk, J. 1994, Phys. Rev. D, 49, 648   DOI   ScienceOn
26 Ikebe, Y. et al. 1999, ApJ, 525, 58   DOI
27 Kitayama, T. et al. 2004, PASJ in press
28 Kompaneets, A. S. 1957, Sov. Phys. JETP, 4, 730
29 Levinson, A. & Eichler, D. 1992, ApJ, 387, 212   DOI
30 Markevitch, M. et al. 2000, ApJ, 541, 542   DOI   ScienceOn
31 Markevitch, M. et al. 2002, ApJ, 567, L27   DOI   ScienceOn
32 Markevitch, M. et al. 2003, ApJ, 586, L19   DOI   ScienceOn