• Title/Summary/Keyword: Compressive Strength of Concrete Core

Search Result 177, Processing Time 0.026 seconds

Compressive Strength Properties of Small Diameter Core Concrete with Coarse Aggregate Particle Distribution (굵은 골재 입도분포에 따른 소구경 코어 콘크리트의 압축강도 특성)

  • Lee, Jin-Won;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.145-146
    • /
    • 2023
  • One of the causes of recent construction site collapses was that the compressive strength of concrete was less than half of the allowable design standard strength range. In the safety diagnosis of structures, the compressive strength of concrete is a factor that determines the durability of a building. Therefore, in this study, we aim to examine the characteristics of compressive strength according to the particle size distribution of coarse aggregate among the compressive strength factors using small-diameter cores. To avoid problems when collecting cores, core specimens with diameters of 100×200, 50×100, and 25×50 (mm) were manufactured directly. As a result of measuring the compressive strength of concrete for each diameter, the larger the core diameter, the higher the compressive strength. has increased.

  • PDF

A Study on the Influencing Factors on the Estimation of Compressive Strength by Small Size Core (소구경 코어에 의한 콘크리트 압축강도 추정에 미치는 실험인자의 영향에 관한 연구)

  • 한민철;김기정;백병훈;한천구;송성진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.361-364
    • /
    • 2002
  • This paper discusses the influencing factors such as coring position, height to diameter ratio of core specimen(h/d) and coring torque on the strength estimation of concrete by small site coring method in order to verify the validities of small size core method. According to results, as for the influence of drilling position, when core specimens are obtained from the place parallel to placing direction, compressive strength of core specimens are higher than those perpendicular to placing direction. This is due to the loss of the area of core specimen perpendicular to plating direction by bleeding. And in case of $\phi$ 24mm core specimen, when vertical drilling against placing direction is taken. compressive strength of core specimen obtained at the bottom of the structure is higher than that at the top of the structure. As for the influence of height to depth ratio, as h/d ratio increases compressive strength shows to be decreased. As for the influences of rotation speed of drilling machine, as its speed goes up, compressive strength decreases, regardless of core diameter.

  • PDF

An Experimental Study on the Evaluation of Compressive Strength of Recycled Aggregate Concrete by the Core and the Non-Destructive Testing (코어 및 비파괴 시험에 의한 재생골재 콘크리트의 압축강도 평가에 대한 실험적 연구)

  • Yang Keun-Hyeok;Kim Yong-Seok;Chung Heon-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.133-136
    • /
    • 2005
  • Compressive strength of recycled aggregate concrete was tested by the core and by the non-destructive testing. A prediction model of compressive strength considering the replacement level of recycled aggregate was suggested by multi-regression analysis and was compared with test results. Also, Test results showed that the ratio of compressive strength by core and non-destructive testing to actual was somewhat affected by the replacement level of recycled aggregate.

  • PDF

Assessing the Compressive Strength of Cylinders within Reinforcing Bars (공시체 압축강도에 미치는 철근의 영향 평가)

  • Ko, Hune-Bum;Cha, Eun-Ho;Oh, Kang-Hwan
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.143-144
    • /
    • 2016
  • The core drilling method is considered to be the most effective and common method of assessing the compressive strength of concrete in existing reinforced concrete buildings for structural repair and retrofit. In general, core specimens within reinforcing bars are not permitted in the regulations with regard to assessing concrete strength even if the core specimens can contain the bars in some cases. The purpose of this study is to investigate the effects of the reinforcement arrangement on the concrete compressive strength as a basic research to propose the quantitative criteria of strength for core specimens containing reinforcements. To complete the basic research, cylinder specimens inserted in a variety of reinforcement arrangements were prepared and tested.

  • PDF

Correction of Various Testing Factors Affecting Measured Compressive Strength of Concrete Core (콘크리트 코어 압축강도의 각종 영향인자 보정)

  • Park, Seok-kyun;Choi, Ook;Oh, Kwang-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.973-978
    • /
    • 2002
  • This study was performed to verify the effect of various testing conditions affecting measured compressive strength of concrete core and to compute the correction coefficients for it. Conditions of specimens affecting test results include size(diameter), height-diameter ratio, humidity of specimen, amount and arrangement of bar, core direction from structure and method of end preparation. In testing core strength of concrete, special cares should be taken on various testing conditions whose effects have been latent in conventional concrete.

  • PDF

A Study on the Influence of Aggregate on the Estimation of Compressive Strength by Small Size Core (소구경 코어에 의한 콘크리트 압축강도 추정에 미치는 골재의 영향에 관한 연구)

  • 김경민;백병훈;한민철;윤기원;한천구;송성진
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2002.11a
    • /
    • pp.51-54
    • /
    • 2002
  • This study is intended to investigate an influence of the kinds and the maximum size of aggregate on the compressive strength of small size core specimen. According to the results, the compressive strength of standard specimen is large in order of basalt, granite and limestone aggregate, and shows increasing tendency as the maximum size of aggregate grows large. The compressive strength of concrete using basalt aggregate shows similar tendency to granite aggregate, and that of concrete using limestone aggregate decreases slightly, compared with granite aggregate. The reducing ratio of the compressive strength of 25mm core specimen is least when the maximum size of aggregate is 10mm. But the compressive strength of 50 and 100mm core specimen is almost not influenced by the maximum size of aggregate.

  • PDF

Concrete Compressive Strength Prediction from Deteriorating Apartment Site (노후아파트 현장에서의 콘크리트 압축강도 추정)

  • Lee Kyu-Dong;Rhim Hong-Chul;Rhim Byeong-Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.05a
    • /
    • pp.155-158
    • /
    • 2006
  • Deduction of compressive strength in concrete members is very important to decide stability of structures. In this study, we compare the compressive strength of concrete between nondestructive test done to the building which was to be demolished at residential reconstruction site and destructive test of core specimen from the site. The result is more reliable because ore can compare the measurement of nondestructive tell with the result from destructive test using drilled cores. Compressive strength of each material was calculated with the result of rebound number test. In addition, we performed ultrasonic test for another result of compressive strength. And we made a comparative study of compressive strength of concrete drawn from both nondestructive and destructive tests.

  • PDF

Evaluation of Tunnel Lining Concrete Using Ultrasonic Pulse Velocity Method (초음파법을 이용한 무근콘크리트 터널라이닝의 품질평가)

  • 최홍식;이시우;신용석;오영석;오광진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.795-800
    • /
    • 2001
  • Two evaluation techniques of the tunnel lining concrete using ultra sonic velocity method are developed. Modified linear regression technique is proposed to enhance the corelation between the pulse velocity and the compressive strength of core specimens. And bivariate normal distribution is assumed to evaluate the quality of concrete as a terms of compressive strength. A simple corelation table between the pulse velocity and the compressive strength of core specimens are proposed.

  • PDF

A Study on Correlation between Compressive Strength and Rebound Hardness of Urban Underground Structures (도시철도 지하구조물 압축강도와 반발경도의 상관관계에 관한 연구)

  • Choi, Jung-Youl;Lee, Soo-Jae;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.655-661
    • /
    • 2020
  • In this study, the correlation between concrete core compressive strength and rebound hardness of urban railway underground structures was analyzed. The equations for the range of rebound hardness were derived and compared with the measured concrete core strengths for each range of rebound hardness to confirm the adequacy of the estimated compressive strength. As the result, the linear regression analysis results of the average compressive strength by the Gaussian probability density function (representative compressive strength estimation formula) and the estimation formula by the rebound hardness range were founded to match well within 3% of the experimental concrete core compressive strength test results. Therefore, the stochastic statistical analysis using the rebound hardness measurement results suggested in this study could be help to secure the confidence level of the correlation between the rebound hardness and the concrete compressive strength which are relatively large deviation according to the estimation equations.

An Empirical Approach for Improving the Estimation of the Concrete Compressive Strength Considered the Effect of Age and Drilled Core Sample (재령과 코어의 영향을 고려한 향상된 콘크리트 압축강도 추정기법의 경험적 제안)

  • Oh, Hongseob;Oh, Kwang-Chin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.6
    • /
    • pp.103-111
    • /
    • 2015
  • To evaluate the compressive strength of concrete, rebound test and ultra pulse velocity methods as well as core test were widely used. The predicted strength effected by age, maturity and degradation of concrete, is a slight difference between in-situ concrete strength. The compressive strength of standard cylinder specimens and core samples by obtained from drilling will have a difference since the concrete is disturbed during the drilling by machinery. And the rebound number and ultra pulse velocity are also changed according to the age and maturity of concrete that effected to the surface hardness and microscpic minuteness. The authors performed the experimental work to reflect the age and core effect to the results from NDE test. The test results considering on the core and age of concrete were compaired with the proposed equation to predict the compressive strength.