• Title/Summary/Keyword: Compression Work

Search Result 547, Processing Time 0.027 seconds

The Analysis of Soil Behaviour by Double Surface Work-hardening Constitutive Model (복합항복면 일-경화구성 모델을 이용한 지반거동해석)

  • Youn, Il-Ro;Oh, Se-Wook
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.15 no.1
    • /
    • pp.21-27
    • /
    • 2012
  • Decomposed granite soils are in a wide range of conditions depending on the degrees of weathering. This paper is intended to examine laboratory tests such as consolidation tests and conventional triaxial compression tests conducted in order to find out the mechanical properties of Cheongju granite soil. Along with the foregoing, the results of basic physical tests conducted in order to grasp the physical properties of Cheongju granite soil were described and based on the results, methods to calculate the mechanical parameters of numerical approaches using Lade's double surface work-hardening constitutive model were examined. Finally, it is intended to explain the stress properties of Cheongju granite soil used as a geotechnical material based on its shear behavior and critical state concept using the results of isotropic consolidation tests and triaxial compression tests. As a conclusion, it can be seen that in the relationship between confining stress and maximum deviator stress, the slope is maintained at a constant value of 2.95. In the drained CTC test, maximum deviator stress generally existed in a range of axial strain of 6~8% and larger dilatancy phenomena appeared when confining stress was smaller. Finally, based on the results of the CTC tests on Cheongju granite soil, although axial strain, deviator stress and pore water pressure showed mechanical properties similar to those of overconsolidated soil, Cheongju granite soil showed behavior similar to that of normally consolidated soil in terms of volumetric strain.

Dorsal Short-Segment Fixation for Unstable Thoracolumbar Junction Fractures

  • Kim, Kwan-Sik;Oh, Sung-Han;Huh, Ji-Soon;Noh, Jae-Sub;Chung, Bong-Sub
    • Journal of Korean Neurosurgical Society
    • /
    • v.40 no.4
    • /
    • pp.249-255
    • /
    • 2006
  • Objective : This study is to evaluate the efficacy of dorsal short-segment fixation in unstable thoracolumbar junction fractures. Methods : The cases of 20 patients who underwent dorsal short-segment fixation were reviewed retrospectively. Clinical outcomes were analysed using Sonntag's pain level, work status, and neurological scale according to the modified Frankel classification. Radiological outcomes were analysed using Mumford's anterior body compression[%], canal compromise ratio, and Cobb's kyphotic angle. Results : At the latest clinical follow-up [average=14.6 months]. there were 19 [95.0%] in group I and 1 patient [5.0%] in II in pain level. The postoperative work status were 17 [85.0%] in group I, 2 patients [10.0%] in II, and 1 patient [5.0%] in V. Surgery brought to improve the neurologic status. In success group [19 cases, 95%], the average canal compromise ratio was reduced from 0.57 [${\pm}0.07$] to 0.05 [${\pm}0.08$] [P<005], the average anterior body compression [%] was reduced from 41% [${\pm}17$] to 18% [${\pm}14$] [P<0.05], and the average preoperative kyphotic angle was $20.0^{\circ}$ [${\pm}9.0$], and corrected to $5.7^{\circ}$ [${\pm}7.1$] postoperatively, and progressed to $7.8^{\circ}$ [${\pm}6.2$] at the latest follow-up. There was a case of implantation failure in an elderly osteoporotic patient. Conclusion : Although there are limitations in the patient number and follow-up period, the present study favors dorsal short-segment fixation for selective cases in unstable thoracolumbar junction fractures.

Operating Characteristics of Low Vacuum Pumps (저진공 펌프의 운전 특성)

  • 임종연;심우건;정광화
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.2
    • /
    • pp.93-104
    • /
    • 2003
  • For evaluation of durability of low vacuum pumps, it is required to examine the performance and degradation of low vacuum pumps. Pump degradation may result from abnormalities associated with the performance in many areas of pump operation. The diagnostics method can be used to monitor the pump performance in the semi-conductor process line. Based on the mechanical defect of the pump, the dynamic response and reliability of the system for performance test, and the dynamic characteristics of the pump were experimentally assessed. The theoretical work rate for the compression process in the pump was calculated, and then the efficiency of the pump associated with the power consumption was evaluated. This analysis will be useful in detecting pump degradation with increasing the power consumption. To determine the predominant factors of pump degradation, it is important to evaluate the entire pumping system. We studied vibration, dynamic pressure, pumping speed, and power consumption of low vacuum pumps. Our results can be utilized for the future research on the evaluating technology of durability of low vacuum pumps.

Comparative Study of NIR-based Prediction Methods for Biomass Weight Loss Profiles

  • Cho, Hyun-Woo;Liu, J. Jay
    • Clean Technology
    • /
    • v.18 no.1
    • /
    • pp.31-37
    • /
    • 2012
  • Biomass has become a major feedstock for bioenergy and other bio-based products because of its renewability and environmental benefits. Various researches have been done in the prediction of crucial characteristics of biomass, including the active utilization of spectroscopy data. Near infrared (NIR) spectroscopy has been widely used because of its attractive features: it's non-destructive and cost-effective producing fast and reliable analysis results. This work developed the multivariate statistical scheme for predicting weight loss profiles based on the utilization of NIR spectra data measured for six lignocellulosic biomass types. Wavelet analysis was used as a compression tool to suppress irrelevant noise and to select features or wavelengths that better explain NIR data. The developed scheme was demonstrated using real NIR data sets, in which different prediction models were evaluated in terms of prediction performance. In addition, the benefits of using right pretreatment of NIR spectra were also given. In our case, it turned out that compression of high-dimensional NIR spectra by wavelet and then PLS modeling yielded more reliable prediction results without handling full set of noisy data. This work showed that the developed scheme can be easily applied for rapid analysis of biomass.

Development of a New Method for Whole-Body Working Postures: K-OWAS

  • Kim, Yu-Chang;Kim, Dae-Su
    • Journal of the Ergonomics Society of Korea
    • /
    • v.31 no.1
    • /
    • pp.165-170
    • /
    • 2012
  • Objective: The aim of this study is to develop new K-OWAS on the basis of the anthropometry of Koreans considering works in shipbuilding and heavy industry for evaluation whole-body working postures. Background: Work Related Musculoskeletal Disorders(WMSDs) were a leading cause of sick leaves and injuries in the industries of our country. Especially, awkward working postures and handling of heavy weight are known as a main cause of WMSDs. OWAS, RULA and REBA are much used as the method for evaluating the awkward working postures. OWAS is the working postures evaluation method that can be used for the evaluation of whole-body working postures. OWAS was the method made based on the anthropometry of the foreigner, working postures and weight does not fit our work state. Method: This method was evaluated considering the anthropometry of the Koreans, working postures and weight in shipbuilding and heavy industry work state in Korea. Results: Correlation of action level of OWAS and subjective discomfort for each body parts were not statistically significant($p{\geq}0.1$). But correlation of action level of K-OWAS and subjective discomfort for torso and waist were statistically significant($p{\leq}0.1$). Conclusion: K-OWAS was suitable in the evaluation of upper body including torso and waist. Application: New method for whole-body working postures from this study prevent WMSDs and help improvement of working environment and design of working method.

Finite Element Analysis for Micro-Forming Process Considering the Size Effect of Materials (소재 크기효과를 고려한 미세가공공정 유한요소해석)

  • Byon, S.M.;Lee, Y.
    • Transactions of Materials Processing
    • /
    • v.15 no.8 s.89
    • /
    • pp.544-549
    • /
    • 2006
  • In this work, we have employed the strain gradient plasticity theory to investigate the effect of material size on the deformation behavior in metal forming process. Flow stress is expressed in terms of strain, strain gradient (spatial derivative of strain) and intrinsic material length. The least square method coupled with strain gradient plasticity was used to calculate the components of strain gradient at each element of material. For demonstrating the size effect, the proposed approach has been applied to plane compression process and micro rolling process. Results show when the characteristic length of the material comes to the intrinsic material length, the effect of strain gradient is noteworthy. For the microcompression, the additional work hardening at higher strain gradient regions results in uniform distribution of strain. In the case of micro-rolling, the strain gradient is remarkable at the exit section where the actual reduction of the rolling finishes and subsequently strong work hardening take places at the section. This results in a considerable increase in rolling force. Rolling force with the strain gradient plasticity considered in analysis increases by 20% compared to that with conventional plasticity theory.

Sensitivity of Parameters for Elasto-plastic Constitutive Model (탄.소성 구성 모델의 초질매개변수 예민성)

  • Jeong, Jin-Seop;Kim, Chan-Gi;Lee, Mun-Su
    • Geotechnical Engineering
    • /
    • v.8 no.2
    • /
    • pp.81-96
    • /
    • 1992
  • This paper dealt with the influence of experimental error generated inevitably during performing experiments on the granular soil behaviour analysis selecting Lade's Single Work-Hardening constitutive model. Several isotropic compression-expansion tests and a series of drained conventional triaxial tests with various confining pressures for Baekma river sands were performed and the values of parameters for the above model were determined using computer program developed for this study based on regression analysis. By finding the range of the upper and lower bound for deviator stress and volumetric strain versus axial strain dependant on the increase and decrease of the standard deviation from mean value of parameters, sensitivities of all the parameters were examined. Practical use of program to determine the parameters and capability to predict the behaviour of granular soil by Lade's Single Work -Hardening model verified.

  • PDF

Is the Agricultural Work a Risk Factor for Koreans Elderly Spinal Sagittal Imbalance?

  • Hong, Jong-Hwan;Han, Moon-Soo;Lee, Seul-Kee;Lee, Jung-Kil;Moon, Bong Ju
    • Journal of Korean Neurosurgical Society
    • /
    • v.63 no.5
    • /
    • pp.623-630
    • /
    • 2020
  • Objective : A primary degenerative sagittal imbalance has been considered because of unique lifestyles such as the prolonged crouched posture during agricultural work and performing activities of daily living on the floor. Previous papers have reported that sagittal imbalance disease is often seen distinctly in the farming districts of "oriental" countries such as Korea and Japan. However, this finding was only evaluated with the use of X-ray, and other factors such as magnetic resonance imaging (MRI), muscle volume, compression fracture, and laboratory results were not considered. Thus, using these, we evaluate the agricultural work-associated factors for Korean elderly spinal sagittal imbalance. Methods : We recruited 103 Korean participants who had a sagittal vertical axis (SVA) of >5 cm in this Korean Elderly Sagittal Imbalance Cohort Study. The following were evaluated : radiological parameters, MRI, compression fracture, vitamin D, parathyroid hormone, C-terminal telopeptide, osteocalcin, bone mineral density and muscle fatty change, muscle volume, and health-related quality of life from patients' survey. Moreover, in this survey, the farmers' annual working hours were investigated. Subsequently, we analyzed the associated factors for spinal sagittal imbalance depending on occupation. Results : A total of 46 participants were farmers, and the others were housewives, sellers, and office workers. The farmer group had more SVA (141 vs. 99 mm, p=0.001) and pelvic tilt (31° vs. 24°, p=0.004) and lesser lumbar lordosis (20° vs. 30°, p=0.009) and thoracic kyphosis (24° vs. 33°, p=0.03) than non-farmer group. A significantly positive correlation was noted between the working hour and SVA in the farmer group (p=0.014). The visual analogue scale score for back pain (8.26 vs. 6.96, p=0.008) and Oswestry Disability Index (23.5 vs. 19.1, p=0.003) in the farmer group were higher than that in the non-farmer group, but the Short Form-36 score was not significantly different between the two groups. The Mini-Mental State Exam score was significantly lower in the farmer group than in the non-farmer group (24.85 vs. 26.98, p=0.002). Conclusion : The farmer group had more sagittal imbalance and back pain in proportion to the working hours even though the muscle and bone factors and general laboratory condition were not significantly different between the two groups. These results supported that the long hours spent in the crouched posture while performing agricultural work were a risk factor for severe sagittal imbalance.

Mechanical Behavior of Slender Concrete-Filled Fiber Reinforced Polymer Columns

  • Choi Sokhwan;Lee Myung;Lee Sung-Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.4 s.82
    • /
    • pp.565-572
    • /
    • 2004
  • The mechanical behavior of concrete-filled glass fiber reinforced polymer columns is affected by various factors including concrete strength, stiffness of tube, end confinement effect, and slenderness ratio of members. In this research the behavior of slender columns was examined both experimentally and analytically. Experimental works include 1) compression test with 30cm long glass fiber composite columns under different end confinement conditions, 2) uni-axial compression test for 7 slender columns, which have various slenderness ratios. Short-length stocky columns gave high strength and ductility revealing high confinement action of FRP tubes. The strength increment and strain change were examined under different end confinement conditions. With slender columns, failure strengths, confinement effects, and stress-strains relations were examined. Through analytical work, effective length was computed and it was compared with the amount of reduction in column strength, which is required to predict design strength with slender specimens. This study shows the feasibility of slender concrete-filled glass fiber reinforced polymer composite columns.

Method of Solving Oxidation Problem in Copper Pillar Bump Packaging Technology of High Density IC (고집적 소자용 구리기둥범프 패키징에서 산화문제를 해결하기 위한 방법에 대한 연구)

  • Jung, One-Chul;Hong, Sang-Jeen;Soh, Dae-Wha;Hwang, Jae-Ryong;Cho, Il-Hwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.12
    • /
    • pp.919-923
    • /
    • 2010
  • Copper pillar tin bump (CPTB) was developed for high density chip interconnect technology. Copper pillar tin bumps that have $100{\mu}m$ pitch were introduced with fabrication process using a KM -1250 dry film photoresist (DFR), copper electroplating method and Sn electro-less plating method. Mechanical shear strength measurements were introduced to characterize the bonding process as a function of thermo-compression. Shear strength has maximum value with $330^{\circ}C$ and 500 N thenno-compression process. Through the simulation work, it was proved that when the copper pillar tin bump decreased in its size, it was largely affected by the copper oxidation.