• Title/Summary/Keyword: Composites Material

Search Result 2,192, Processing Time 0.028 seconds

Thermal buckling of rectangular sandwich plates with advanced hybrid SMA/CNT/graphite/epoxy composite face sheets

  • Saeed Kamarian;Jung-Il Song
    • Advances in nano research
    • /
    • v.14 no.3
    • /
    • pp.261-271
    • /
    • 2023
  • The present study follows three main goals. First, an analytical solution with high accuracy is developed to assess the effects of embedding pre-strained shape memory alloy (SMA) wires on the critical buckling temperatures of rectangular sandwich plates made of soft core and graphite fiber/epoxy (GF/EP) face sheets based on piecewise low-order shear deformation theory (PLSDT) using Brinson's model. As the second goal, this study compares the effects of SMAs on the thermal buckling of sandwich plates with those of carbon nanotubes (CNTs). The glass transition temperature is considered as a limiting factor. For each material, the effective ranges of operating temperature and thickness ratio are determined for real situations. The results indicate that depending on the geometric parameters and thermal conditions, one of the SMAs and CNTs may outperform the other. The third purpose is to study the thermal buckling of sandwich plates with advanced hybrid SMA/CNT/GF/EP composite face sheets. It is shown that in some circumstances, the co-incorporation of SMAs and CNTs leads to an astonishing enhancement in the critical buckling temperatures of sandwich plates.

개인방호용 복합재료의 기술동향

  • Yuk, Jong-Il;Yun, Byeong-Il;Baek, Jong-Gyu;Song, Heung-Seop
    • Composites Research
    • /
    • v.22 no.6
    • /
    • pp.52-62
    • /
    • 2009
  • This paper is for the state of the art of the lightweight protective clothing against the mine, and it covers the preliminary work focused on the appropriate protection, ballistics, convenience, and wearability. It is suggested that the lightweight protective clothing should be fabricated with the laminated materials of high strength woven and non-woven fabrics to reduce the weight and thickness, thus improving the wearability. And partial reinforcement of the protective clothing is necessary to prevent the mortal wound near the important parts of the body without disturbing the arbitrary activity. The composition of the protective clothing should be designed in consideration of easy putting-on and taking-off in addition to easy divesture, which require little motion of the body is in case of serious injury. Additionally, status of the practical technique for high performance and ultra-light hybrid armor material were also described.

Design and Impact Testing of Cylindrical Composite Antenna Structures (원통형 복합재료 안테나의 설계 및 충격 실험에 관한 연구)

  • Lee, Sang-Min;Cho, Sang-Hyun;Lee, Chang-Woo;Hwang, Woon-Bong
    • Composites Research
    • /
    • v.22 no.3
    • /
    • pp.55-59
    • /
    • 2009
  • Microstrip antennas are low profile, are conformable to planar and nonplanar surfaces, are simple and inexpensive to manufacture, mechanically robust when mounted on rigid surfaces and are compatible with MMIC(Monolithic microwave integrated circuit) designs; they have been used in diverse communication systems. The rectangular microstrip patch antenna is designed for a central frequency of 12.5 GHz, and the final product is a $4{\times}1$ array antenna with curvature radius of 200 mm. The microstrip antenna is embedded in a sandwich structure which consists of skin and core material. After impact, the performance of damaged antenna is estimated by measuring the return loss and radiation pattern. The antenna performance was not affected by this impact damage.

A Study on Post-Tensioned Reinforced Concrete Slab by the Beam Theory (포스트텐션된 철근콘크리트 슬래브의 보 이론에 의한 연구)

  • Han, Bong-Koo;Kim, Duck-Hyun
    • Composites Research
    • /
    • v.22 no.5
    • /
    • pp.24-29
    • /
    • 2009
  • In this paper, a post-tensioned reinforced concrete slab was analyzed by the specially orthotropic laminates theory. Both the geometrical and material property of the cross section of the slab was considered symmetrically with respect to the neutral surface so that the bending extension coupling stiffness, $B_{ij}=0$, and $D_{16}=D_{26}=0$. Reinforced concrete slab behave as specially orthotropic plates. In general, the analytical solution for such complex systems is very difficult to obtain. Thus, finite difference method was used for analysis of the problem. In this paper, the finite difference method and the beam theory were used for analysis. The result of beam analysis was modified to obtain the solution of the plate analysis.

Personal Ceramic Armor Materials to Protect the Human lives in the Warfare (생명을 보호히는 개인용 세라믹 방탄보호재료)

  • Kim, Ki-Soo
    • Composites Research
    • /
    • v.22 no.4
    • /
    • pp.50-53
    • /
    • 2009
  • This paper mainly describes the armor materials, especially the ceramic materials for the personal protection. In the ceramic armor materials, B4C ceramics and SiC ceramics are the most popular materials. The $B_4C$ ceramics which consists of 4 atoms of boron and I atom of carbon is very light and strong. It is usually used to personal protection armor and chair protection in the helicopter. This material must be sintered at very high temperature because it melts at $2400^{\circ}C$. In order to have a good armor property, it must have very high density which is achieved by hot press or subsidiary sintering aid methods such as reducing the particle size of raw materials or mixing the sintering agents to the raw materials.

Preparation and Characterization of Inorganic Continuous Fibers from Korean Basalt and Quartz Diorite Porphyry (국내산 현무암과 맥반석으로부터 무기질 연속섬유 제조와 그 특성)

  • Kim, jae-Keun;Bae, Ji-Soo;Na, Sang-Moon;Kim, Seung-Il;Jin, Yong-Jun
    • Composites Research
    • /
    • v.19 no.6
    • /
    • pp.32-37
    • /
    • 2006
  • This paper summarizes the processing inorganic continuous fibers from Korean minerals. Continuous filament fibers have been produced from two rocks, basalt and quartz diorite porphyry(QDP), by melting method. The essence of the method is that the vitrified materials was placed into the bushing, platinum/rhodium alloy crucible with a nozzle, and heated electrically to a temperature which allowed fiber spinning. Vitrified basalt without additive was suitable for producing continuous filament fiber. However doping quartz diorite porphyry with boric oxide yielded a material which could be pulled continuously.

Design of an Aircraft Composite Window frame Using VaRTM Process (수지 충전 공정을 이용한 항공기 윈도우 프레임 설계)

  • Kim, Wie-Dae;Hong, Dae-Jin
    • Composites Research
    • /
    • v.19 no.6
    • /
    • pp.1-7
    • /
    • 2006
  • This is the preliminary study to develop composite window frame of commercial aircraft using VaRTM process. For two candidate carbon fabrics(triaxial overbraid, sleeving braider), specimens were fabricated using VaRTM process, and the physical & mechanical property tests were performed to obtain the material properties according to ASTM. FEM analysis for each candidate carbon fabric was performed to find the minimum number of plies and weight for composite window frame to satisfy the design requirements. In this study, Tsai-Wu strength failure criterion was used to evaluate the safety of structure.

Nonlinear Aeroelastic Analyses of Composite Wing with Flap (플랩을 갖는 복합재 평판 날개의 비선형 공력 탄성학 해석)

  • Shin, Won-Ho;Bae, Jae-Sung;Lee, In
    • Composites Research
    • /
    • v.20 no.1
    • /
    • pp.8-14
    • /
    • 2007
  • Nonlinear aeroelastic analyses of composite wing with flap are performed considering free-play and dynamic stiffness of actuator. Doublet-Hybrid method is used for the calculation of subsonic unsteady aerodynamic forces. Free-play is modeled as a bilinear spring and is linearized by using the describing function method. Dynamic stiffness is obtained from governing equation of gear system and the aeroelastic analyses were performed according to ply-angle of laminate and material. The linear and nonlinear flutter analysis results show that the flutter characteristics are significantly dependent on the free-play and dynamic stiffness. from the nonlinear flutter analysis, various types of limit cycle oscillations are observed in a range of air speeds below or above the linear divergent flutter boundary.

On nonlinear deflection analysis and dynamic response of sandwich plates based on a numerical method

  • Yong Huang;Zengshui Liu;Shihan Ma;Sining Li;Rui Yu
    • Steel and Composite Structures
    • /
    • v.47 no.1
    • /
    • pp.79-90
    • /
    • 2023
  • Nonlinear forced vibration properties of three-layered plates containing graphene platelets (GPL) filled skins and an auxetic core have been inquired within the present paper. Owning reduced weight as well as reduced stiffness, rectangle-shaped auxetic cores have been frequently made from novel techniques such as additive manufacturing. Here, the rectangle shape core is amplified via the graphene-filled layers knowing that the layers possess uniform and linear graphene gradations. The rectangle shape core has the equivalent material specifications pursuant to relative density value. The sandwich plate is formulated pursuant to Kirchhoff plate theory while a numerical trend has been represented to discretize the plate equations. Next, an analytical trend has been performed to establish the deflection-frequency plots. Large deflections, core density and GPL amplification have showed remarkable impacts on dynamic response of three-layered plates.

Durability properties of fly ash-based geopolymer mortars with different quarry waste fillers

  • Tammam, Yosra;Uysal, Mucteba;Canpolat, Orhan
    • Computers and Concrete
    • /
    • v.29 no.5
    • /
    • pp.335-346
    • /
    • 2022
  • Geopolymers are an important alternative material supporting recycling, sustainability, and waste management. Durability properties are among the most critical parameters to be investigated; in this study, the durability of manufactured geopolymer samples under the attack of 10% magnesium sulfate and 10% sodium sulfate solution was investigated. 180 cycles of freezing and thawing were also tested. The experimentally obtained results investigate the durability of geopolymer mortar prepared with fly ash (class F) and alkali activator. Three different quarry dust wastes replaced the river sand aggregate: limestone, marble, and basalt powder as fine filler aggregate in three different replacement ratios of 25%, 50%, and 75% to produce ten series of geopolymer composites. The geopolymer samples' visual appearance, weight changes, UPV, and strength properties were studied for up to 12 months at different time intervals of exposure to sulfate solutions to investigate sulfate resistance. In addition, Scanning Electron Microscopy (SEM), EDS, and XRD were used to study the microstructure of the samples. It was beneficial to include quarry waste as a filler aggregate in durability and mechanical properties. The compact matrix was demonstrated by microstructural analysis of the manufactured specimens. The geopolymer mortars immersed in sodium sulfate showed less strength reduction and deterioration than magnesium sulfate, indicating that magnesium sulfate is more aggressive than sodium sulfate. Therefore, it is concluded that using waste dust interrogation with partial replacement of river sand with fly ash-based geopolymers has satisfactory results in terms of durability properties of freeze-thaw and sulfate resistance.