Browse > Article
http://dx.doi.org/10.12989/cac.2022.29.5.335

Durability properties of fly ash-based geopolymer mortars with different quarry waste fillers  

Tammam, Yosra (Civil Engineering Department, Istanbul Gelisim University)
Uysal, Mucteba (Civil Engineering Department, Faculty of Civil Engineering, Yildiz Technical University, Davutpasa Campus)
Canpolat, Orhan (Civil Engineering Department, Faculty of Civil Engineering, Yildiz Technical University, Davutpasa Campus)
Publication Information
Computers and Concrete / v.29, no.5, 2022 , pp. 335-346 More about this Journal
Abstract
Geopolymers are an important alternative material supporting recycling, sustainability, and waste management. Durability properties are among the most critical parameters to be investigated; in this study, the durability of manufactured geopolymer samples under the attack of 10% magnesium sulfate and 10% sodium sulfate solution was investigated. 180 cycles of freezing and thawing were also tested. The experimentally obtained results investigate the durability of geopolymer mortar prepared with fly ash (class F) and alkali activator. Three different quarry dust wastes replaced the river sand aggregate: limestone, marble, and basalt powder as fine filler aggregate in three different replacement ratios of 25%, 50%, and 75% to produce ten series of geopolymer composites. The geopolymer samples' visual appearance, weight changes, UPV, and strength properties were studied for up to 12 months at different time intervals of exposure to sulfate solutions to investigate sulfate resistance. In addition, Scanning Electron Microscopy (SEM), EDS, and XRD were used to study the microstructure of the samples. It was beneficial to include quarry waste as a filler aggregate in durability and mechanical properties. The compact matrix was demonstrated by microstructural analysis of the manufactured specimens. The geopolymer mortars immersed in sodium sulfate showed less strength reduction and deterioration than magnesium sulfate, indicating that magnesium sulfate is more aggressive than sodium sulfate. Therefore, it is concluded that using waste dust interrogation with partial replacement of river sand with fly ash-based geopolymers has satisfactory results in terms of durability properties of freeze-thaw and sulfate resistance.
Keywords
durability; fly ash; freezing-thawing; geopolymer; microstructure; quarry waste materials; sulfate environment;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Puertas, F. and Fernandez-Jimenez, A. (2003), "Mineralogical and microstructural characterisation of alkali-activated fly ash/slag pastes", Cement Concrete Compos., 25(3), 287-292. https://doi.org/10.1016/S0958-9465(02)00059-8.   DOI
2 Roy, D.M., Jiang, W. and Silsbee, M.R. (2000), "Chloride diffusion in ordinary, blended, and alkali-activated cement pastes and its relation to other properties", Cement Concrete Res., 30(12), 1879-1884. https://doi.org/10.1016/S0008-8846(00)00406-3.   DOI
3 Scrivener, K.L. and Young, J.F. (1997), Mechanisms of Chemical Degradation of Cement-Based Systems, CRC Press.
4 Slavik, R., Bednarik, V., Vondruska, M. and Nemec, A. (2008), "Preparation of geopolymer from fluidized bed combustion bottom ash", J. Mater. Proc. Tech., 200(1), 265-270. https://doi.org/10.1016/j.jmatprotec.2007.09.008.   DOI
5 Valencia Saavedra, W.G., Angulo, D.E. and Mejia de Gutierrez, R. (2016), "Fly ash slag geopolymer concrete: Resistance to sodium and magnesium sulfate attack", J. Mater. Civil Eng., 28(12), 4016148.   DOI
6 Sahu, A., Kumar, S. and Sachan, A.K. (2003), Crushed stone waste as fine aggregate for concrete", Ind. Concrete J., 77, 845-848.
7 Pilehvar, S., Szczotok, A.M., Rodriguez, J.F., Valentini, L., Lanzon, M., Pamies, R. and Kjoniksen, A.L. (2019), "Effect of freeze-thaw cycles on the mechanical behavior of geopolymer concrete and Portland cement concrete containing microencapsulated phase change materials", Constr. Build. Mater., 200, 94-103. https://doi.org/10.1016/j.conbuildmat.2018.12.057.   DOI
8 Maslehuddin, M., Al-Mehthel, M., Alidi, S.H., Shameem, M. and Ibrahim, M. (2010), "Effect of dust in coarse aggregates on reinforcement corrosion in concrete", Constr. Build. Mater., 24(3), 326-331. https://doi.org/10.1016/j.conbuildmat.2009.08.030.   DOI
9 Neupane, K., Chalmers, D. and Kidd, P. (2018), "High-strength geopolymer concrete-properties, advantages and challenges", Adv. Mater., 7(2), 15-25. https://doi.org/10.11648/j.am.20180702.11.   DOI
10 Pacheco-Torgal, F., Abdollahnejad, Z., Camoes, A.F., Jamshidi, M. and Ding, Y. (2012), "Durability of alkali-activated binders: A clear advantage over Portland cement or an unproven issue?", Constr. Build. Mater., 30, 400-405. https://doi.org/10.1016/j.conbuildmat.2011.12.017.   DOI
11 Rajamane, N.P., Nataraja, M.C., Dattatreya, J.K., Lakshmanan, N. and Sabitha, D. (2012), "Sulphate resistance and eco-friendliness of geopolymer concretes", Ind. Concrete J., 86(1), 13.
12 Thokchom, S.P.G. and Ghosh, S. (2010), "Performance of fly ash based geopolymer mortars in sulphate solution", J. Eng. Sci. Tech. Rev., 3(1), 36-40. https://doi.org/10.25103/jestr.031.07.   DOI
13 Fernandez-Jimenez, A., Palomo, J.G. and Puertas, F. (1999), "Alkali-activated slag mortars: Mechanical strength behaviour", Cement Concrete Res., 29(8), 1313-1321. https://doi.org/10.1016/S0008-8846(99)00154-4.   DOI
14 Fu, Y., Cai, L. and Yonggen, W. (2011), "Freeze-thaw cycle test and damage mechanics models of alkali-activated slag concrete", Constr. Build. Mater., 25(7), 3144-3148. https://doi.org/10.1016/j.conbuildmat.2010.12.006.   DOI
15 Ziada, M., Erdem, S., Tammam, Y., Kara, S. and Lezcano, R.A. (2021), "The effect of basalt fiber on mechanical, microstructural, and high-temperature properties of fly ash-based and basalt powder waste-filled sustainable geopolymer mortar", Sustain., 13, 22. https://doi.org/10.3390/su132212610.   DOI
16 Temuujin, J., Minjigmaa, A., Davaabal, B., Bayarzul, U., Ankhtuya, A., Jadambaa, T. and MacKenzie, K.J.D. (2014), "Utilization of radioactive high-calcium Mongolian flyash for the preparation of alkali-activated geopolymers for safe use as construction materials", Ceram. Int., 40(10, Part B), 16475-16483. https://doi.org/10.1016/j.ceramint.2014.07.157.   DOI
17 Skvara, F., Jilek, T. and Kopecky, L. (2005), "Geopolymer materials based on fly ash", Ceram. Silikaty, 49, 195-204.
18 Abora, K., Belena, I., Bernal, S.A., Dunster, A., Nixon, P.A., Provis, J.L., Tagnit-Hamou, A. and Winnefeld, F. (2014), "Durability and testing-Chemical matrix degradation processes", Alkali Activated Mater., 177-221. https://doi.org/10.1007/978-94-007-7672-2_8.   DOI
19 Zamanabadi, S.N., Zareei, S.A., Shoaei, P. and Ameri, F. (2019), "Ambient-cured alkali-activated slag paste incorporating micro-silica as repair material: Effects of alkali activator solution on physical and mechanical properties", Constr. Build. Mater., 229, 116911. https://doi.org/10.1016/j.conbuildmat.2019.116911.   DOI
20 Ferraris, C.F., Clifton, J.R., Stutzman, P.E. and Garboczi, E.J. (1997), "Mechanisms of degradation of Portland cement-based systems by sulfate attack", Mech. Chem. Degrad. Cement Based Syst., 1997, 185-192.
21 Galetakis, M. and Raka, S. (2004), "Utilization of limestone dust for artificial stone production: An experimental approach", Min. Eng., 17, 355-357. https://doi.org/10.1016/j.mineng.2003.10.031.   DOI
22 Gorhan, G., Aslaner, R. and Sinik, O. (2016), "The effect of curing on the properties of metakaolin and fly ash-based geopolymer paste", Compos. B Eng., 97, 329-335. https://doi.org/10.1016/j.compositesb.2016.05.019.   DOI
23 Hill, A.R., Dawson, A.R. and Mundy, M. (2001), "Utilisation of aggregate materials in road construction and bulk fill", Res Conserv. Recycl., 32(3), 305-320. https://doi.org/10.1016/S0921-3449(01)00067-2.   DOI
24 Ismail, I., Bernal, S.A., Provis, J.L., Hamdan, S. and van Deventer, J.S.J. (2013), "Microstructural changes in alkali activated fly ash/slag geopolymers with sulfate exposure", Mater. Struct., 46(3), 361-373. https://doi.org/10.1617/s11527-012-9906-2.   DOI
25 Joseph, B. and Mathew, G. (2012), "Influence of aggregate content on the behavior of fly ash based geopolymer concrete", Scientia Iranica, 19(5), 1188-1194. https://doi.org/10.1016/j.scient.2012.07.006.   DOI
26 Tammam, Y., Uysal, M. and Canpolat, O. (2021), "Effects of alternative ecological fillers on the mechanical, durability, and microstructure of fly ash-based geopolymer mortar", Eur. J. Envir. Civil Eng., 1-24. https://doi.org/10.1080/19648189.2021.1925157.   DOI
27 He, P., Wang, M., Fu, S., Jia, D., Yan, S., Yuan, J., Xu, J., Wang, P. and Zhou, Y. (2016), "Effects of Si/Al ratio on the structure and properties of metakaolin based geopolymer", Ceram. Int., 42(13), 14416-14422. https://doi.org/10.1016/j.ceramint.2016.06.033.   DOI
28 Krivenko, P. V (1999), "Alkaline cements: structure, properties, aspects of durability", Proceedings of the Second International Conference on Alkaline Cements and Concretes, Kiev, Oranta, 3-43.
29 Aye, T. and Oguchi, C.T. (2011), "Resistance of plain and blended cement mortars exposed to severe sulfate attacks", Constr. Build. Mater., 25(6), 2988-2996. https://doi.org/10.1016/j.conbuildmat.2010.11.106.   DOI
30 Bakharev, T. (2005), "Durability of geopolymer materials in sodium and magnesium sulfate solutions", Cement Concrete Res., 35(6), 1233-1246. https://doi.org/10.1016/j.cemconres.2004.09.002.   DOI
31 Douglas, E., Bilodeau, A., Brandstetr, J. and Malhotra, V.M. (1991), "Alkali activated ground granulated blast-furnace slag concrete: Preliminary investigation", Cement Concrete Res., 21(1), 101-108. https://doi.org/10.1016/0008-8846(91)90036-h.   DOI
32 Dzunuzovic, N., Komljenovic, M., Nikolic, V. and Ivanovic, T. (2017), "External sulfate attack on alkali-activated fly ash-blast furnace slag composite", Constr. Build. Mater., 157, 737-747. https://doi.org/10.1016/j.conbuildmat.2017.09.159.   DOI
33 Elyamany, H.E., Abd Elmoaty, A.E.M. and Elshaboury, A.M. (2018), "Magnesium sulfate resistance of geopolymer mortar", Constr. Build. Mater., 184, 111-127. https://doi.org/10.1016/j.conbuildmat.2018.06.212.   DOI
34 Celik, T. and Marar, K. (1996), "Effects of crushed stone dust on some properties of concrete", Cement Concrete Res., 26(7), 1121-1130. https://doi.org/10.1016/0008-8846(96)00078-6.   DOI
35 Basheer, L., Kropp, J. and Cleland, D.J. (2001), "Assessment of the durability of concrete from its permeation properties: A review", Constr. Build. Mater., 15(2), 93-103. https://doi.org/10.1016/S0950-0618(00)00058-1.   DOI
36 Bonen, D. and Cohen, M.D. (1992), "Magnesium sulfate attack on Portland cement paste-I. Microstructural analysis", Cement Concrete Res., 22(1), 169-180. https://doi.org/10.1016/0008-8846(92)90147-N.   DOI
37 Cai, L., Wang, H. and Fu, Y. (2013), "Freeze-thaw resistance of alkali-slag concrete based on response surface methodology", Constr. Build. Mater., 49, 70-76. https://doi.org/10.1016/j.conbuildmat.2013.07.045.   DOI
38 Chotetanorm, C., Chindaprasirt, P., Sata, V., Rukzon, S. and Sathonsaowaphak, A. (2013), "High-calcium bottom ash geopolymer: Sorptivity, pore size, and resistance to sodium sulfate attack", J. Mater. Civil Eng., 25, 105-111. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000560.   DOI
39 Davidovits, J. (1989), "Geopolymers and geopolymeric materials", J. Therm. Analy. Calorimetry, 35(2), 429-441. https://doi.org/10.1007/BF01904446.   DOI
40 Duxson, P, Mallicoat, S.W., Lukey, G.C., Kriven, W.M. and van Deventer, J.S.J. (2007), "The effect of alkali and Si/Al ratio on the development of mechanical properties of metakaolin-based geopolymers", Colloids Surfaces A: Physicochem. Eng. Aspects, 292(1), 8-20. https://doi.org/10.1016/j.colsurfa.2006.05.044.   DOI
41 Allahverdi, A., Abadi, M.M.B.R., Anwar Hossain, K.M. and Lachemi, M. (2014), "Resistance of chemically-activated high phosphorous slag content cement against freeze-thaw cycles", Cold Regions Sci. Tech., 103, 107-114. https://doi.org/10.1016/j.coldregions.2014.03.012.   DOI
42 Ziada, M., Tammam, Y. and Erdem, S. (2022a), "Research of alternative ecological waste materials used in geopolymers for sustainable built environments", Urban Sustainability and Energy Management of Cities for Improved Health and Well-Being, 159-178. https://doi.org/10.4018/978-1-6684-4030-8.ch009.   DOI
43 Puertas, F., Mejia, R., Fernandez-Jimenez, A., Delvasto, S. and Maldonado, J. (2002), "Alkaline cement mortars. Chemical resistance to sulfate and seawater attack", Materiales de Construccion, 52(267), 55-71. https://doi.org/10.3989/mc.2002.v52.i267.326.   DOI
44 Sukmak, P., de silva, P. and Chindaprasirt, P. (2015), "Sulfate resistance of clay-portland cement and clay high-calcium fly ash geopolymer", J. Mater. Civil Eng., 27, 4014158. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001112.   DOI
45 Wongpa, J., Kiattikomol, K., Jaturapitakkul, C. and Chindaprasirt, P. (2010), "Compressive strength, modulus of elasticity, and water permeability of inorganic polymer concrete", Mater. Des., 31(10), 4748-4754. https://doi.org/10.1016/j.matdes.2010.05.012.   DOI
46 Ziada, M., Tammam, Y., Erdem, S. and Lezcano, R.A. (2022b), "Investigation of the mechanical, microstructure and 3D fractal analysis of nanocalcite-modified environmentally friendly and sustainable cementitious composites", Build., 12(1), 36. https://doi.org/10.3390/buildings12010036.   DOI
47 Chang, F.C., Lee, M.Y., Lo, S.L. and Lin, J.D. (2010), "Artificial aggregate made from waste stone sludge and waste silt", J. Envir. Manag., 91(11), 2289-2294. https://doi.org/10.1016/j.jenvman.2010.06.011.   DOI
48 Bernal Susan, A., Mejia de Gutierrez, R. and Provis, J.L. (2012), "Engineering and durability properties of concretes based on alkali-activated granulated blast furnace slag/metakaolin blends", Constr. Build. Mater., 33, 99-108. https://doi.org/10.1016/j.conbuildmat.2012.01.017.   DOI
49 Bernal, S.A, Herfort, D. and Skibsted, J. (2011), "Hybrid binders based on alkali sulfate-activated Portland clinker and metakaolin", XIII ICCC International Congress on the Chemistry of Cement, Madrid.
50 Brough, A.R. and Atkinson, A. (2002), "Sodium silicate-based, alkali-activated slag mortars: Part I. Strength, hydration and microstructure", Cement Concrete Res., 32(6), 865-879. https://doi.org/10.1016/S0008-8846(02)00717-2.   DOI
51 Degirmenci, F.N. (2018), "Freeze-Thaw and fire resistance of geopolymer mortar based on natural and waste pozzolans".
52 Kapgate, S. S. and Satone, S. R. (2013), "Effect of quarry dust as partial replacement of sand in concrete", Ind. Streams Res. J., 3(5), 1-8.
53 Sun, P. and Wu, H.C. (2013), "Chemical and freeze-thaw resistance of fly ash-based inorganic mortars", Fuel, 111, 740-745. https://doi.org/10.1016/j.fuel.2013.04.070.   DOI
54 Luukkonen, T., Abdollahnejad, Z., Yliniemi, J., Mastali, M., Kinnunen, P. and Illikainen, M. (2019), "Alkali-activated soapstone waste-Mechanical properties, durability, and economic prospects", Sustain. Mater. Tech., 22, e00118. https://doi.org/10.1016/j.susmat.2019.e00118.   DOI
55 Madlool, N.A., Saidur, R., Hossain, M.S. and Rahim, N.A. (2011), "A critical review on energy use and savings in the cement industries", Renew. Sustain. Ener. Rev., 15(4), 2042-2060. https://doi.org/10.1016/j.rser.2011.01.005.   DOI
56 Salami, B.A., Megat Johari, M.A., Ahmad, Z.A. and Maslehuddin, M. (2017), "Durability performance of Palm Oil Fuel Ash-based Engineered Alkaline-activated Cementitious Composite (POFAEACC) mortar in sulfate environment", Constr. Build. Mater., 131, 229-244. https://doi.org/10.1016/j.conbuildmat.2016.11.048.   DOI
57 Wang, S.D. and Scrivener, K.L. (1995), "Hydration products of alkali activated slag cement", Cement Concrete Res., 25(3), 561-571. https://doi.org/10.1016/0008-8846(95)00045-E.   DOI
58 Zhang, J., Shi, C., Zhang, Z. and Ou, Z. (2017), "Durability of alkali-activated materials in aggressive environments: A review on recent studies", Constr. Build. Mater., 152, 598-613. https://doi.org/10.1016/j.conbuildmat.2017.07.027.   DOI
59 Ruiz-Agudo, E., Putnis, C.V, Jimenez-Lopez, C. and Rodriguez-Navarro, C. (2009), "An atomic force microscopy study of calcite dissolution in saline solutions: The role of magnesium ions", Geochimica et Cosmochimica Acta, 73(11), 3201-3217. https://doi.org/10.1016/j.gca.2009.03.016.   DOI
60 Sagoe-Crentsil, K., Brown, T. and Taylor, A. (2013), "Drying shrinkage and creep performance of geopolymer concrete", J. Sustain. Cement-Based Mater., 2(1), 35-42. https://doi.org/10.1080/21650373.2013.764963.   DOI
61 Santhanam, M., Cohen, M.D. and Olek, J. (2003), "Mechanism of sulfate attack: a fresh look: Part 2. Proposed mechanisms", Cement Concrete Res., 33(3), 341-346. https://doi.org/10.1016/S0008-8846(02)00958-4.   DOI
62 Singh, B.G.I., Gupta, M. and Bhattacharyya, S.K. (2015), "Geopolymer concrete: A review of some recent developments", Constr. Build. Mater., 85. https://doi.org/10.1016/j.conbuildmat.2015.03.036.   DOI
63 Ephraim, M. and E.O, R.L. (2015), "Elasticity and durability of concrete made with quarry rock dust and washed 10 mm gravel as aggregates", Am. J. Eng. Tech. Soc., 2, 52-59.
64 Duxson, Peter, Provis, J.L., Lukey, G.C., Mallicoat, S.W., Kriven, W.M. and van Deventer, J.S.J. (2005), "Understanding the relationship between geopolymer composition, microstructure and mechanical properties", Colloids Surfaces A: Physicochem. Eng. Aspects, 269(1), 47-58. https://doi.org/10.1016/j.colsurfa.2005.06.060.   DOI