• 제목/요약/키워드: Composite section

검색결과 1,151건 처리시간 0.026초

최적 단면 치수를 가지는 복합재료 U-Beam의 설계 (Design of composite channel section beam for optimal dimensions)

  • 이헌창;전흥재;박지상;변준형
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 추계학술발표대회 논문집
    • /
    • pp.276-279
    • /
    • 2002
  • A problem formulation and solution for design optimization of laminated composite channel section beam is presented in this study. The objective of this study is the determination of optimum section dimensions of composite laminated channel section beam which has equivalent flexural rigidities to flexural rigidities of steel channel section beam. The analytical model is based on the laminate theory and accounts for the material coupling for arbitrary laminate stacking sequence configuration. The model is used to determine the optimal section dimensions of composite channel section beam. The web height, flange width and thickness of the beam are treated as design variables. The solutions described are found using a global search algorithm, Genetic Algorithms (GA).

  • PDF

Simulations of PEC columns with equivalent steel section under gravity loading

  • Begum, Mahbuba;Ghosh, Debaroti
    • Steel and Composite Structures
    • /
    • 제16권3호
    • /
    • pp.305-323
    • /
    • 2014
  • This paper presents numerical simulations of partially encased composite columns (PEC) with equivalent steel sections. The composite section of PEC column consists of thin walled welded H- shaped steel section with transverse links provided at regular intervals between the flanges. Concrete is poured in the space between the flanges and the web plate. Most of the structural analysis and design software do not handle such composite members due to highly nonlinear material behavior of concrete as well as due to the complex interfacial behaviour of steel and concrete. In this paper an attempt has been made to replace the steel concrete composite section by an equivalent steel section which can be easily incorporated in the design and analysis software. The methodology used for the formulation of the equivalent steel section is described briefly in the paper. Finite element analysis is conducted using the equivalent steel section of partially encased composite columns tested under concentric gravity loading. The reference test columns are obtained from the literature, encompassing a variety of geometric and material properties. The finite element simulations of the composite columns with equivalent steel sections are found to predict the experimental behaviour of partially encased composite columns with very good accuracy.

신형상 층고절감형 합성보의 최적단면 도출에 관한 연구 (A Study on Optimum Section of New Type Steel-Concrete Composite Beam)

  • 윤명호;이윤희
    • 복합신소재구조학회 논문집
    • /
    • 제2권3호
    • /
    • pp.30-35
    • /
    • 2011
  • 본 연구에서는 신형상 층고절감형 합성보에 대한 최적단면을 도출하기 위해 단면성능 계산 프로그램을 개발하여 단면성능에 대해 비교 분석을 하였다. 신형상 합성보는 상부 플랜지 하부에 바닥시스템이 위치하여 전통적인 공법에 비해 층고절감의 효과와 최적단면으로 설계시 공기의 단축과 비용의 절감은 물론 물량의 감소를 기대 할 수 있다. 그러나 단면은 기존 H형강 보와 달리 상하 비대칭으로 중립축의 위치가 중앙에 위치하지 않기 때문에 상하연단에 대한 단면계수가 같지 않게 된다. 이에 따른 상하플랜지 판요소의 두께비에 따른 매개 변수적 분석이 요구된다. 따라서, 본 연구에서는 단면의 상부 플랜지 두께에 대한 하부 플랜지 두께의 비에 따른 중립축위치, 단면계수의 변화추이를 분석하여 최적단면을 도출하는데 주목적을 두었다.

강재매입형 합성기둥의 합성작용에 관한 실험 (Experiments on the Composite Action of Steel Encased Composite Column)

  • 정인근;민진;심창수;정영수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.485-488
    • /
    • 2004
  • Steel encased composite columns have been used for buildings and piers of bridges. Since column section for pier is relatively larger than that of building columns, economical steel ratio need to be investigated for the required performance. Composite action between concrete and embedded steel sections can be obtained by bonding and friction. However, the behavior. of the column depends on the load introduction mechanism. Compression can be applied to concrete section, steel section and composite section. In this paper, experiments on shear strength of the steel encased composite column were performed to study the effect of confinement by transverse reinforcements, mechanical interlock by holes, and shear connectors. Shear strength obtained from the tests showed considerably higher than the design value. Confinement, mechanical interlock and stud connectors increased the shear strength and these values can be used effectively to obtain composite action of SRC columns.

  • PDF

Advanced numerical model for the fire behaviour of composite columns with hollow steel section

  • Renaud, C.;Aribert, J.M.;Zhao, B.
    • Steel and Composite Structures
    • /
    • 제3권2호
    • /
    • pp.75-95
    • /
    • 2003
  • A numerical model is presented to simulate the mechanical behaviour of composite steel and concrete columns taking into account the interaction between the hollow steel section and the concrete core. The model, based on displacement finite element methods with an Updated Lagrangian formulation, allows for geometrical and material non linearities combined with heating over all or a part of the section and column length. Comparisons of numerical calculations made using the model with 33 fire resistance tests show that the model is able to predict the fire resistance, expressed in minutes of fire exposure, of composite columns with a good accuracy.

Optimal laminate sequence of thin-walled composite beams of generic section using evolution strategies

  • Rajasekaran, S.
    • Structural Engineering and Mechanics
    • /
    • 제34권5호
    • /
    • pp.597-609
    • /
    • 2010
  • A problem formulation and solution methodology for design optimization of laminated thin-walled composite beams of generic section is presented. Objective functions and constraint equations are given in the form of beam stiffness. For two different problems one for open section and the other for closed section, the objective function considered is bending stiffness about x-axis. Depending upon the case, one can consider bending, torsional and axial stiffnesses. The different search and optimization algorithm, known as Evolution Strategies (ES) has been applied to find the optimal fibre orientation of composite laminates. A multi-level optimization approach is also implemented by narrowing down the size of search space for individual design variables in each successive level of optimization process. The numerical results presented demonstrate the computational advantage of the proposed method "Evolution strategies" which become pronounced to solve optimization of thin-walled composite beams of generic section.

복합재료 로터 블레이드 단면 모델링 프로그램 개발 (Development of Program for Modeling of Cross Section of Composite Rotor Blade)

  • 도형수;조진연;박일주;정성남;김태주;김도형
    • 한국항공우주학회지
    • /
    • 제39권3호
    • /
    • pp.261-268
    • /
    • 2011
  • 복합재료 로터 블레이드는 각종 보강재와 더불어 적층된 형태로 구성되어 있어 그 단면 구조가 매우 복잡하고, 이로 인해 모델링에 어려움이 존재한다. 본 논문에서는 효율적인 로터 블레이드 단면 모델링을 위해 집합 연산에 기반 한 2차원 모델링 알고리듬을 활용하여 그래픽 사용자 환경을 갖춘 프로그램 KSec2D를 구현하였다. 구현된 프로그램을 이용하여 복잡한 로터 블레이드 단면 형상 모델링을 수행하고 이를 통해 복합재료 로터블레이드 모델링 시 개발된 프로그램의 유용성을 확인하였다.

Structural behavior of slender circular steel-concrete composite columns under various means of load application

  • Johansson, Mathias;Gylltoft, Kent
    • Steel and Composite Structures
    • /
    • 제1권4호
    • /
    • pp.393-410
    • /
    • 2001
  • In an experimental and analytical study on the structural behavior of slender circular steel-concrete composite columns, eleven specimens were tested to investigate the effects of three ways to apply a load to a column. The load was applied eccentrically to the concrete section, to the steel section or to the entire section. Three-dimensional nonlinear finite element models were established and verified with the experimental results. The analytical models were also used to study how the behavior of the column was influenced by the bond strength between the steel tube and the concrete core and the by confinement of the concrete core offered by the steel tube. The results obtained from the tests and the finite element analyses showed that the behavior of the column was greatly influenced by the method used to apply a load to the column section. When relying on just the natural bond, full composite action was achieved only when the load was applied to the entire section of the column. Furthermore, because of the slenderness effects the columns did not exhibit the beneficial effects of composite behavior in terms of increased concrete strength due to the confinement.

Study on behavior of T-section modular composite profiled beams

  • Ryu, Soo-Hyun
    • Steel and Composite Structures
    • /
    • 제10권5호
    • /
    • pp.457-473
    • /
    • 2010
  • In this study, specimens were made with profile thicknesses and shear reinforcement as parameters. The bending and shear behavior were checked, and comparative analysis was conducted of the results and the theoretical values in order to see the applicability of T-section Modular Composite Profiled Beams (TMPB). In TMPB, the profiles of formwork functions play a structural role resisting the load. Also, the module concept, which is introduced into TMPB, has advantages: it can be mass-produced in a factory, it is lighter than an existing H-beam, it can be fabricated on the spot, and its section size is freely adjustable. The T1 specimens exhibited ductile behavior, where the whole section displayed strain corresponding to yielding strain at least without separation between modules. They also exhibited maximum strength similar to the theoretical values even if shear reinforcement was not applied, due to the marginal difference between shear strength and maximum bending monment of the concrete section. A slip between modules was incurred by shear failure of the bolts in all specimens, excluding the T1 specimen, and therefore bending moment could not be fully displayed.

대칭 및 반 대칭으로 적층된 복합재료 채널 빔의 굽힘 거동 (Bending Behaviors of CAS and CUS Thick-walled Composite Channel Beam)

  • 박미정;전흥재;변준형
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 춘계학술발표대회 논문집
    • /
    • pp.167-171
    • /
    • 2005
  • The thick open section composite beams are used extensively as load carrying members and stiffeners of structural elements. However, most of studies on thick composite beams are limited only to closed section beams. In this study, an open cross-section thick-walled composite beam model which includes coupled stiffness, transverse shear, and warping effects is suggested and the deflections associated with the thick-walled composite beams and thin-walled composite beams are obtained and compared with the finite element analysis results. The correlation between thin and thick walled composite beam was achieved for two different layup configurations which are the circumferentially asymmetric stiffness (CAS) and circumferentially uniform stiffness (CUS) beams.

  • PDF