DOI QR코드

DOI QR Code

Structural behavior of slender circular steel-concrete composite columns under various means of load application

  • Johansson, Mathias (Department of Structural Engineering, Concrete Structures, Chalmers University of Technology) ;
  • Gylltoft, Kent (Department of Structural Engineering, Concrete Structures, Chalmers University of Technology)
  • Published : 2001.12.25

Abstract

In an experimental and analytical study on the structural behavior of slender circular steel-concrete composite columns, eleven specimens were tested to investigate the effects of three ways to apply a load to a column. The load was applied eccentrically to the concrete section, to the steel section or to the entire section. Three-dimensional nonlinear finite element models were established and verified with the experimental results. The analytical models were also used to study how the behavior of the column was influenced by the bond strength between the steel tube and the concrete core and the by confinement of the concrete core offered by the steel tube. The results obtained from the tests and the finite element analyses showed that the behavior of the column was greatly influenced by the method used to apply a load to the column section. When relying on just the natural bond, full composite action was achieved only when the load was applied to the entire section of the column. Furthermore, because of the slenderness effects the columns did not exhibit the beneficial effects of composite behavior in terms of increased concrete strength due to the confinement.

Keywords

References

  1. Attard, M.M. and Setung, S. (1996), "Stress-strain relationship of confined and unconfined concrete", ACI Materials Journal, Sept.-Oct. 1996, Title no. 93-M49, 432-442.
  2. Baltay, P. and Gjelsvik, A. (1990), "Coefficient of friction for steel on concrete at high normal stress", J. Materials in Civil Eng., 2(1), February 1990, 46-49. https://doi.org/10.1061/(ASCE)0899-1561(1990)2:1(46)
  3. Boverket (1994), Boverkets Handbok för Betongkonstruktioner BBK 94, Band 1, Konstruktion (Boverket's Handbook for Concrete Structures, BBK 94, Vol. 1, Design. In Swedish). Boverket, Byggavdelningen, Karlskrona, Sweden, 185 pp.
  4. BST Byggstandardisering (1991), Betongprovning med Svensk Standard BST Handbok 12, Utgava 6 (Swedish Standards for Concrete Testing, BST Handbook 12, Sixth edition. In Swedish), SIS Standardiseringskommissionen i Sverige och Svensk Byggtjänst, Stockholm, 286 pp.
  5. CEB Bulletin d'Information 228. (1995), High Performance Concrete, Recommended Extensions to the Model Code 90, Research Needs. Lausanne, Switzerland, July 1995.
  6. Chen, W.J. and Han, D.J. (1988), Plasticity for Structural Engineers, Springer-Verlag New York Inc., USA, 1988, 606 pp.
  7. European Prestandard, Eurocode 4 (1992), "Design of composite steel and concrete structures, Part 1-1: General rules and rules for buildings", Ref. No. 1994-1-1:1992, October 1992, 180.
  8. Furlong, R.W. (1967), "Strength of steel-encased concrete beam columns", J. Struct. Div., Proc. ASCE, 93(ST5), October 1967, 113-124.
  9. Grauers, M. (1993), Composite Columns of Hollow Steel Sections Filled with High Strength Concrete. Publication 93:2, Ph.D. dissertation, Chalmers University of Technology, Division of Concrete Structures, Goteborg, Sweden, June 1993, 236 pp.
  10. Gylltoft, K. (1983), Fracture Mechanics Models for Fatigue in Concrete Structures. 1983:25D, Lulea University of Technology, Division of Structural Engineering, Lulea, Sweden, 210 pp.
  11. Hajjar, J.F., Schiller, P.H. and Molodan, A. (1998), "A distributed plasticity model for concrete-filled steel tube beam-columns with interlayer slip", Eng. Struct., 20(8), Aug. 1998, 663-676. https://doi.org/10.1016/S0141-0296(97)00107-7
  12. HKS (1997), ABAQUS/Standard User's Manual, version 5.7, Hibbit, Karlsson & Sorensen, Inc., Pawtucket.
  13. Johansson, M. (2000), "Structural behaviour of circular steel-concrete composite columns: non-linear finite element analyses and experiments", Licentiate thesis, Chalmers University of Technology, Div. of Concrete Struct., Goteborg, Sweden.
  14. Kilpatrick, A.E. and Rangan, B.V. (1999a), "Tests on high-strength concrete-filled steel tubular columns", ACI Structural Journal, March-April 1999, Title no. 96-S29, 268-274.
  15. Kilpatrick, A.E. and Rangan, B.V. (1999b), "Influence of interfacial shear transfer on behavior of concrete-filled steel tubular columns", ACI Structural Journal, July-Aug. 1999, Title no. 96-S72, 642-648.
  16. Knowles, R.B. and Park, R. (1969), "Strength of concrete filled steel tubular columns", J. Struct. Div., ASCE, 95(ST12), Dec. 1969, 2565-2587.
  17. Neogi, P.K., Sen, H.K. and Chapman, J.C. (1969), "Concrete-filled tubular steel columns under eccentric loading", The Structural Journal, 47(5), May 1969, 187-195.
  18. RILEM 50-FMC Committee (1985), "Determination of the fracture energy of mortar and concrete by means of three-point bend tests on notched beams", Material and Structures, 18(106), 285-290. https://doi.org/10.1007/BF02472917
  19. Roeder, C.W., Cameron, B. and Brown, C.B. (1999), "Composite action in concrete filled tubes", J. Struct. Eng., 125(5), May 1999, 477-484. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:5(477)
  20. Shams, M. and Saadeghvaziri, M.A. (1997), "State of the art of concrete-filled steel tubular columns", ACI Structural Journal, Sept.-Oct. 1997, Title no. 94-S51, 558-571.
  21. SS 11 21 19: Metalliska Material Dragprovstavar av Ror Rorstrimlor Typ J (Metallic materials Tensile test pieces from tubes Test pieces type J. In Swedish). SIS Standardiseringskommissionen i Sverige, Sweden, 1986.

Cited by

  1. Axially loaded RC columns strengthened by steel cages vol.162, pp.3, 2009, https://doi.org/10.1680/stbu.2009.162.3.199
  2. Composite action in connection regions of concrete-filled steel tube columns vol.3, pp.1, 2003, https://doi.org/10.12989/scs.2003.3.1.047
  3. Tests on fiber reinforced concrete filled steel tubular columns vol.4, pp.1, 2004, https://doi.org/10.12989/scs.2004.4.1.037
  4. Reliability-based evaluation of design code provisions for circular concrete-filled steel columns vol.31, pp.10, 2009, https://doi.org/10.1016/j.engstruct.2009.05.004
  5. Beam-column behavior of concrete filled steel tubes vol.2, pp.4, 2002, https://doi.org/10.12989/scs.2002.2.4.259
  6. Evaluation of passive confinement in CFT columns vol.66, pp.4, 2010, https://doi.org/10.1016/j.jcsr.2009.11.004
  7. Axially loaded RC columns strengthened by steel caging. Finite element modelling vol.23, pp.6, 2009, https://doi.org/10.1016/j.conbuildmat.2008.11.014
  8. Long-term behaviour of a reinforced concrete wall under compressive stress applied to part of the wall's entire width vol.60, pp.10, 2008, https://doi.org/10.1680/macr.2008.00090
  9. Finite Element Simulation of Concrete-Filled Double-Skin Tube Columns Subjected to Postearthquake Fires vol.141, pp.12, 2015, https://doi.org/10.1061/(ASCE)ST.1943-541X.0001301
  10. Local Buckling Restraining Behavior of Thin-Walled Circular CFT Columns under Seismic Loads vol.140, pp.5, 2014, https://doi.org/10.1061/(ASCE)ST.1943-541X.0000904
  11. Avaliação da segurança de pilares mistos preenchidos de seção circular projetados segundo a norma NBR 8800:2008 vol.1, pp.3, 2008, https://doi.org/10.1590/S1983-41952008000300001
  12. Experimental behaviour of eccentrically loaded slender circular hollow steel columns in-filled with fibre reinforced concrete vol.62, pp.5, 2006, https://doi.org/10.1016/j.jcsr.2005.09.004
  13. Simulation and design recommendations of eccentrically loaded slender concrete-filled tubular columns vol.33, pp.5, 2011, https://doi.org/10.1016/j.engstruct.2011.01.028
  14. Influence of ultra-high strength infill in slender concrete-filled steel tubular columns vol.86, 2013, https://doi.org/10.1016/j.jcsr.2013.03.016
  15. Influence of concrete strength and length/diameter on the axial capacity of CFT columns vol.65, pp.12, 2009, https://doi.org/10.1016/j.jcsr.2009.07.004
  16. Influence of mechanical and geometrical properties of embedded long-gauge strain sensors on the accuracy of strain measurement vol.23, pp.6, 2012, https://doi.org/10.1088/0957-0233/23/6/065604
  17. Experimental tests on biaxially loaded concrete-encased composite columns vol.8, pp.5, 2008, https://doi.org/10.12989/scs.2008.8.5.423
  18. FEM ANALYSIS FOR HYSTERETIC BEHAVIOR OF THIN-WALLED STIFFENED RECTANGULAR STEEL COLUMNS WITH IN-FILLED CONCRETE vol.66, pp.4, 2010, https://doi.org/10.2208/jsceja.66.816
  19. Numerical study of confinement in short concrete filled steel tube columns vol.11, pp.8, 2014, https://doi.org/10.1590/S1679-78252014000800010
  20. Long-term behaviour of square concrete-filled steel tubular columns under axial service loads vol.59, pp.1, 2007, https://doi.org/10.1680/macr.2007.59.1.53
  21. Influence of Slenderness on High-Strength Rectangular Concrete-Filled Tubular Columns with Axial Load and Nonconstant Bending Moment vol.138, pp.12, 2012, https://doi.org/10.1061/(ASCE)ST.1943-541X.0000590
  22. An experimental study on FRC infilled steel tubular columns under eccentric loading vol.21, pp.3, 2017, https://doi.org/10.1007/s12205-016-0851-4
  23. Experimental study of high strength concrete-filled circular tubular columns under eccentric loading vol.67, pp.4, 2011, https://doi.org/10.1016/j.jcsr.2010.11.017
  24. Nonlinear Finite-Element Analysis for Hysteretic Behavior of Thin-Walled Circular Steel Columns with In-Filled Concrete vol.136, pp.11, 2010, https://doi.org/10.1061/(ASCE)ST.1943-541X.0000240
  25. Behavior and calculation on concrete-filled steel CHS (Circular Hollow Section) beam-columns vol.4, pp.3, 2004, https://doi.org/10.12989/scs.2004.4.3.169
  26. Column–joint assembly in RC columns strengthened by steel caging vol.161, pp.6, 2008, https://doi.org/10.1680/stbu.2008.161.6.337
  27. Nonlinear Finite Element Analysis for Cyclic Behavior of Thin-Walled Stiffened Rectangular Steel Columns with In-Filled Concrete vol.138, pp.5, 2012, https://doi.org/10.1061/(ASCE)ST.1943-541X.0000504
  28. Dimensionamento de pilares preenchidos de seção circular submetidos à compressão simples, segundo a NBR 8800:2008 e Eurocode 4:2004: comparação com resultados experimentais vol.62, pp.1, 2009, https://doi.org/10.1590/S0370-44672009000100011
  29. Predicting the axial load capacity of high-strength concrete filled steel tubular columns vol.19, pp.4, 2015, https://doi.org/10.12989/scs.2015.19.4.967
  30. Curvature-relevant analysis of eccentrically loaded circular concrete-filled steel tube columns vol.66, pp.24, 2014, https://doi.org/10.1680/macr.14.00112
  31. Analysis of Circular Concrete-Filled Steel Tube Specimen under Lateral Impact vol.14, pp.5, 2011, https://doi.org/10.1260/1369-4332.14.5.941
  32. Biaxial bending of slender HSC columns and tubes filled with concrete under short- and long-term loads: I) Theory vol.34, pp.2, 2014, https://doi.org/10.15446/ing.investig.v34n2.41118
  33. FEM ANALYSIS FOR HYSTERETIC BEHAVIOR OF CFT BRIDGE PIERS CONSIDERING INTERACTION BETWEEN STEEL TUBE AND INFILLED CONCRETE vol.65, pp.2, 2009, https://doi.org/10.2208/jsceja.65.487
  34. 중심축 하중을 받는 각형 CFT 기둥의 장기거동에 관한 연구 vol.17, pp.2, 2001, https://doi.org/10.4334/jkci.2005.17.2.281
  35. 격막이 설치된 각형 CFT 기둥의 장기거동에 관한 연구 vol.17, pp.6, 2001, https://doi.org/10.4334/jkci.2005.17.6.1025
  36. 축하중을 받는 철근콘크리트 벽체의 장기거동에 관한 연구 vol.18, pp.3, 2006, https://doi.org/10.4334/jkci.2006.18.3.339
  37. Strength of Concrete Filled Steel Tubular Columns vol.11, pp.6, 2006, https://doi.org/10.1016/s1007-0214(06)70248-6
  38. Confinement models for high strength short square and rectangular concrete-filled steel tubular columns vol.22, pp.5, 2001, https://doi.org/10.12989/scs.2016.22.5.937
  39. Analysis of circular steel tube confined UHPC stub columns vol.23, pp.6, 2001, https://doi.org/10.12989/scs.2017.23.6.669
  40. Seismic behavior of stiffened concrete-filled double-skin tubular columns vol.27, pp.5, 2001, https://doi.org/10.12989/scs.2018.27.5.577
  41. Lateral Structural Performance of Small-Size Grout-Filled Tubular Members vol.19, pp.1, 2001, https://doi.org/10.9798/kosham.2019.19.1.257
  42. Experimental and analytical investigation of composite columns made of high strength steel and high strength concrete vol.33, pp.1, 2019, https://doi.org/10.12989/scs.2019.33.1.067
  43. Mechanical behaviour of composite columns composed of RAC-filled square steel tube and profile steel under eccentric compression loads vol.38, pp.1, 2001, https://doi.org/10.12989/scs.2021.38.1.103