• Title/Summary/Keyword: Composite oxide

Search Result 699, Processing Time 0.027 seconds

Construction and Characterization of Poly (Phenylene Oxide)-Based Organic/Inorganic Composite Membranes Containing Graphene Oxide for the Development of an Anion Exchange Membrane with Extended Ion Cluster (확장된 이온 클러스터를 갖는 음이온 교환막 개발을 위한 그래핀 옥사이드를 함유한 폴리(페닐렌 옥사이드) 기반 유·무기 복합막의 제조 및 특성분석)

  • CHU, JI YOUNG;YOO, DONG JIN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.6
    • /
    • pp.524-533
    • /
    • 2021
  • In this study, a series of anion conductive organic/inorganic composite membranes with excellent ionic conductivity and chemical stability were prepared by introducing graphene oxide (GO) inorganic nanofiller into the quaternized poly(phenylen oxide (Q-PPO) polymer matrix. The fabricated organic/inorganic composite membranes showed higher ionic conductivity than the pristine membrane. In particular, Q-PPO/GO 0.7 showed the highest ionic conductivity value of 143.2 mS/cm at 90℃, which was 1.56 times higher than the pristine membrane Q-PPO (91.5 mS/cm). In addition, the organic/inorganic composite membrane showed superior dimensional stability and alkaline stability compared to the pristine membrane, and the physicochemical stability was improved as the content of inorganic fillers increased. Therefore, we suggest that the as-prepared organic/inorganic composite membranes are very promising materials for anion exchange membrane applications with high conductivity and alkaline stability.

Cobalt Oxide-Tin Oxide Composite: Polymer-Assisted Deposition and Gas Sensing Properties (PAD법으로 제작된 산화코발트-산화주석 복합체의 가스 감응 특성)

  • An, Sea-Yong;Li, Wei;Jang, Dong-Mi;Jung, Hyuck;Kim, Do-Jin
    • Korean Journal of Materials Research
    • /
    • v.20 no.11
    • /
    • pp.611-616
    • /
    • 2010
  • A cobalt oxide - tin oxide nanocomposite based gas sensor on an $SiO_2$ substrate was fabricated. Granular thin film of tin oxide was formed by a rheotaxial growth and thermal oxidation method using dc magnetron sputtering of Sn. Nano particles of cobalt oxide were spin-coated on the tin oxide. The cobalt oxide nanoparticles were synthesized by polymer-assisted deposition method, which is a simple cost-effective versatile synthesis method for various metal oxides. The thickness of the film can be controlled over a wide range of thicknesses. The composite structures thus formed were characterized in terms of morphology and gas sensing properties for reduction gas of $H_2$. The composites showed a highest response of 240% at $250^{\circ}C$ upon exposure to 4% $H_2$. This response is higher than those observed in pure $SnO_2$ (90%) and $Co_3O_4$ (70%) thin films. The improved response with the composite structure may be related to the additional formation of electrically active defects at the interfaces. The composite sensor shows a very fast response and good reproducibility.

Iron Oxide-Carbon Nanotube Composite for NH3 Detection (산화철-탄소나노튜브 나노복합체의 암모니아 가스센서 응용)

  • Lee, Hyundong;Kim, Dahye;Ko, DaAe;Kim, Dojin;Kim, Hyojin
    • Korean Journal of Materials Research
    • /
    • v.26 no.4
    • /
    • pp.187-193
    • /
    • 2016
  • Fabrication of iron oxide/carbon nanotube composite structures for detection of ammonia gas at room temperature is reported. The iron oxide/carbon nanotube composite structures are fabricated by in situ co-arc-discharge method using a graphite source with varying numbers of iron wires inserted. The composite structures reveal higher response signals at room temperature than at high temperatures. As the number of iron wires inserted increased, the volume of carbon nanotubes and iron nanoparticles produced increased. The oxidation condition of the composite structures varied the carbon nanotube/iron oxide ratio in the structure and, consequently, the resistance of the structures and, finally, the ammonia gas sensing performance. The highest sensor performance was realized with $500^{\circ}C/2h$ oxidation heat-treatment condition, in which most of the carbon nanotubes were removed from the composite and iron oxide played the main role of ammonia sensing. The response signal level was 62% at room temperature. We also found that UV irradiation enhances the sensing response with reduced recovery time.

Strain sensing skin-like film using zinc oxide nanostructures grown on PDMS and reduced graphene oxide

  • Satish, Tejus;Balakrishnan, Kaushik;Gullapalli, Hemtej;Nagarajaiah, Satish;Vajtai, Robert;Ajayan, Pulickel M.
    • Structural Monitoring and Maintenance
    • /
    • v.4 no.2
    • /
    • pp.107-113
    • /
    • 2017
  • In this paper, we present a strain-sensitive composite skin-like film made up of piezoresistive zinc oxide (ZnO) nanorods embedded in a flexible poly(dimethylsiloxane) substrate, with added reduced graphene oxide (rGO) to facilitate connections between the nanorod clusters and increase strain sensitivity. Preparation of the composite is described in detail. Cyclic strain sensing tests are conducted. Experiments indicate that the resulting ZnO-PDMS/rGO composite film is strain-sensitive and thus capable of sensing cycling strain accurately. As such, it has the potential to be molded on to a structure (civil, mechanical, aerospace, or biological) in order to provide a strain sensing skin.

Enhanced thermomechanical properties of poly(ethylene oxide) and functionalized bacterial cellulose nanowhiskers composite nanofibers

  • Yun, Ok-Ja
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.376-376
    • /
    • 2016
  • Poly(ethylene oxide) (PEO)/functionalized bacterial cellulose nanowhiskers (f-BCNW) (0.1 wt%) composite nanofibers were fabricated by electrospinning process and the thermomechanical properties were significantly enhanced more than the PEO and PEO/bacterial cellulose nanowhiskers (BCNW) (0.1 wt%) composite nanofibers. The functionalization of BCNW (f-BCNW) was performed by microwave plasma treatment for effects of nitrogen functionalization of chemically-driven BCNW. The N-containing functional groups of f-BCNW enhanced chemical bonding between the hydroxyl groups of the polymer chains in the PEO matrix and diameter size of PEO/f-BCNW (0.1 wt%) composite nanofibers were decreased more than PEO and PEO/BCNW (0.1 wt%) composite nanofibers on the same concentration. The strong interfacial interactions between the f-BCNW nanofillers and polymer matrix were improved the thermomechanical properties such as crystallization temperature, weight loss and glass transition temperature (Tg) compared to PEO and PEO/BCNW composites nanofibers. The results demonstrated that N2 plasma treatment of BCNW is very useful in improving thermal stability for bio-applications.

  • PDF

Charge Transport Properties of Polyaniline-gold/graphite Oxide Composite Films

  • Basavaraja, C.;Kim, Won-Jung;Thinh, P.X.;Huh, Do-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.449-452
    • /
    • 2012
  • A polyaniline-gold composite was prepared via the polymerization of aniline hydrochloride with or without water-soluble graphite oxide using auric acid as an oxidant. The reaction products were characterized using Xray photoelectron spectroscopy. The thermal stability and embedded crystallinity of the composites were also investigated using thermogravimetric and X-ray diffraction analyses. The electrical properties of the composites were examined using cyclic voltammetric measurements at room temperature and temperature-dependent DC conductivity within 300-500 K. Compared to pure graphene oxide and polyaniline-gold composite, the polyaniline-gold-graphene composite exhibited higher crystallinity and thermal stability, and higher current density response under equivalent conditions.

Growth of $GdVO_4$ composite single-crystal rods by the double-die edge-defined film-fed growth technique

  • Furukawa, Y.;Matsukura, M.;Nakamura, O.;Miyamoto, A.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.1
    • /
    • pp.1-4
    • /
    • 2008
  • The growth of composite-structured Nd:$GdVO_4$ single crystal rods by the double die EFG method is reported. Two crucibles are combined with an outer and inner die for ascending of different melt. The composite-structured Nd:$GdVO_4$ single crystal rods with a length of 50 mm and an outer diameter of 5 mm including of inner Nd-doped core region with diameter 3 mm were grown successfully. Nd distribution in the, radial direction has graded profile from result of EPMA. Absorption coefficient in the core region at 808 nm was $42cm^{-1}$. Finally, we demonstrated the laser oscillation using our composite crystal and 2-W output was obtained.

Preparation and Characterization of Cerium Oxide/Silica Composite Particles (세륨 옥사이드/실리카 복합입자 제조 및 특성분석)

  • Koh, Seo Eun;Shim, Jongwon;Jin, Byung Suk
    • Applied Chemistry for Engineering
    • /
    • v.29 no.4
    • /
    • pp.425-431
    • /
    • 2018
  • Composite particles of porous silica and cerium oxide nanoparticles blocking UV/blue light were prepared through a dry coating process. Various composite particles were prepared by varying conditions such as the mixing ratio of cerium oxide and silica, and the chamber rotating speed of mechano fusion system. The surface morphology of the composite particles was observed with SEM and the composition was analyzed using X-ray fluorescence (XRF). When the cerium oxide/silica composite particles were dispersed in water, the transparency and dispersion stability of the colloidal solution were improved. In addition, the fluidity and spreadability of the particle powder were enhanced by making composite particles. These results show that cerium oxide/silica composite particles can be used as functional cosmetic ingredients for UV/blue light protection.

Effect of Graphene Oxide on the Properties of Its Composite Fibers with PMMA and Nylon 6,6 (고강도 PMMA 및 나일론 - 산화그래핀 복합재료 섬유의 제조 및 특성평가)

  • Hwang, Sang-Ha;Lee, Dong-Wook;Baek, Jong-Beom;Shin, Hyeon-Suk;Park, Young-Bin
    • Composites Research
    • /
    • v.24 no.4
    • /
    • pp.1-4
    • /
    • 2011
  • In this work, we successfully fabricated graphene oxide (GO) and GO-based PMMA composite fiber and nylon films. Dynamic mechanical and tensile properties of PMMA-GO composite fiber showed that GO is efficient reinforcement for polymer matrices. However, Nylon 6,6-GO composite films showed low reinforcement efficiency in terms of dynamic mechanical and tensile properties due to the colloid instability of GO in formic acid at a low pH level.

Electrochemical Property of the Composite Electrode with Graphene Balls and Graphene Oxide for Supercapacitor (슈퍼커패시터용 그래핀볼 - 그래핀옥사이드 복합전극의 전기화학적 특성)

  • Jeong, Woo-Jun;Oh, Ye-Chan;Kim, Sang-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.5
    • /
    • pp.213-218
    • /
    • 2020
  • Composite material of the graphene ball (GB) inserted graphene oxide (GO) sheet for a supercapacitor electrode was studied. Chemical vapor deposition (CVD) process used to make GBs on the silicon oxide nanoparticles. The GBs mixed into the GO sheets to make GOGB and reduced it to create a reduced GOGB(RGOGB) composite. The RGOGB composite electrode had a large surface area and improved electrochemical properties. Specific capacitance of the RGBGO composite electrode was higher over 20 times than a pure GO and GOGB electrode in cyclic voltammetry(CV) tests, and the Z' and Z" impedance measured by an electrochemical impedance spectrometry(EIS) also low. So, the RGBGO composite electrode would use effectively to expand a performance of supercapacitor.