Browse > Article
http://dx.doi.org/10.3740/MRSK.2016.26.4.187

Iron Oxide-Carbon Nanotube Composite for NH3 Detection  

Lee, Hyundong (Graduate School of Advanced Electronic Circuit Substrate Engineering, Chungnam National University)
Kim, Dahye (Department of Materials Science and Engineering, Chungnam National University)
Ko, DaAe (Graduate School of Advanced Electronic Circuit Substrate Engineering, Chungnam National University)
Kim, Dojin (Graduate School of Advanced Electronic Circuit Substrate Engineering, Chungnam National University)
Kim, Hyojin (Graduate School of Advanced Electronic Circuit Substrate Engineering, Chungnam National University)
Publication Information
Korean Journal of Materials Research / v.26, no.4, 2016 , pp. 187-193 More about this Journal
Abstract
Fabrication of iron oxide/carbon nanotube composite structures for detection of ammonia gas at room temperature is reported. The iron oxide/carbon nanotube composite structures are fabricated by in situ co-arc-discharge method using a graphite source with varying numbers of iron wires inserted. The composite structures reveal higher response signals at room temperature than at high temperatures. As the number of iron wires inserted increased, the volume of carbon nanotubes and iron nanoparticles produced increased. The oxidation condition of the composite structures varied the carbon nanotube/iron oxide ratio in the structure and, consequently, the resistance of the structures and, finally, the ammonia gas sensing performance. The highest sensor performance was realized with $500^{\circ}C/2h$ oxidation heat-treatment condition, in which most of the carbon nanotubes were removed from the composite and iron oxide played the main role of ammonia sensing. The response signal level was 62% at room temperature. We also found that UV irradiation enhances the sensing response with reduced recovery time.
Keywords
gas sensor; iron oxide-carbon nanotube composite; $NH_3$; room temperature;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 N. K. Pawar, D. D. Kajale, G. E. Patil, V. G. Wagh, V. B. Gaikwad , M. K. Deore and G. H. Jain, Int. J. Smart Sens. Intelligent Syst., 5, 441 (2012).   DOI
2 A. Mandelis, C. Christofides, Physics, Chemistry and Technology of Solid State Gas Sensor Devices, Wiley-Interscience, New York (1993).
3 N. H. Kim and G. J. Kim, J. Nanosci. Nanotechnol., 11, 3914 (2007).
4 N. D. Hoa, N. V. Quy, Y. Cho and D. Kim, Sens. Actuators B, 135, 656 (2009).   DOI
5 N. D. Hoa, N. V. Quy, Y. Cho and D. Kim, J. Cryst. Growth., 311, 657 (2009).   DOI
6 D. H. Oh, N. D. Hoa and D. Kim, J. Nanosci. Nanotechnol., 11, 1601 (2011).   DOI
7 N. M. Vuong, D. Kim, H. Jung, H. Kim and S. K. Hong, J. Mater. Chem., 22, 6716 (2012).   DOI
8 N. M. Vuong, D. Kim and H. Kim, Sens. Actuators B, 220, 932 (2015).   DOI
9 N. Donato, M. Latino, G. Neri, Carbon nanotubes-From research to applications, p. 299 Ed. Bianco, In Tech Pub. Astralia, (2011).
10 S. Moon, N. M. Vuong, D. Lee, D. Kim, H. Lee, D. Kim, S. K. Hong and S. G. Yoon, Sens. Actuators B, 222, 166 (2016).   DOI
11 N. M. Vuong, D. Kim and H. Kim, Sci. Rep., 5, 11040 (2015).   DOI
12 S. H. Jung, E. Oh, K. H. Lee, W. Park and S. H. Jeong, Adv. Mater., 19, 749 (2007).   DOI
13 H. Jung, Y. S. Cho, Y. J. Kang and D. J. Kim, Korean J. Mater. Res., 18, 5 (2008).   DOI
14 Y. Miyata, K. Mizuno and H. Kataura, J. Nanomater., 2011, 1 (2011).
15 G. S. Choi, Y. S. Cho, S. Y. Hong, J. B. Park, K. H. Son and D. J. Kim, J. Appl. Phys., 91, 3847 (2002).   DOI
16 D. Oh, Y. Kang, H. Jung, H. Song, Y. Cho and D. Kim, Korean J. Mater. Res., 19, 488 (2009).   DOI
17 X. Zhang, H. Li, S. Wang, F. F. Fan and A. J. Bard, J. Phys. Chem. C, 118, 16842 (2014).   DOI