Browse > Article
http://dx.doi.org/10.14478/ace.2018.1010

Preparation and Characterization of Cerium Oxide/Silica Composite Particles  

Koh, Seo Eun (Division of Chemistry & Cosmetics, Dongduk Women's University)
Shim, Jongwon (Division of Chemistry & Cosmetics, Dongduk Women's University)
Jin, Byung Suk (Division of Chemistry & Cosmetics, Dongduk Women's University)
Publication Information
Applied Chemistry for Engineering / v.29, no.4, 2018 , pp. 425-431 More about this Journal
Abstract
Composite particles of porous silica and cerium oxide nanoparticles blocking UV/blue light were prepared through a dry coating process. Various composite particles were prepared by varying conditions such as the mixing ratio of cerium oxide and silica, and the chamber rotating speed of mechano fusion system. The surface morphology of the composite particles was observed with SEM and the composition was analyzed using X-ray fluorescence (XRF). When the cerium oxide/silica composite particles were dispersed in water, the transparency and dispersion stability of the colloidal solution were improved. In addition, the fluidity and spreadability of the particle powder were enhanced by making composite particles. These results show that cerium oxide/silica composite particles can be used as functional cosmetic ingredients for UV/blue light protection.
Keywords
cerium dioxide; silica; composite particles; mechanofusion; bluelight;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. Antoniou, M. G. Kosmadaki, A. J. Stratigos, and A. D. Katsambas, Sunscreens - what's important to know, J. Eur. Acad. Dermatol. Venereol., 22, 1110-1118 (2008).   DOI
2 E. Toutiou and B Godin, Skin nonpenetrating sunscreens for cosmetic and pharmaceutical formulations, Clin. Dermatol., 26, 375-379 (2008).
3 T. Uchino, H. Tokunaga, M. Ando, and H. Utsumi, Quantitative determination of OH radical generation and its cytotoxicity induced by $TiO_2$ UVA treatment. Toxicol. in Vitro., 16(5), 629-635 (2002).   DOI
4 K. Pierzchala, M. Lekka, A. Magrez, A. J. Kulik, L. Forro, and A. Sienkiewicz, Photocatalytic and phototoxic properties of $TiO_{2-}$ based nanofilaments: ESR and AFM assays, Nanotoxicology, 6, 813-824 (2012).   DOI
5 E. Gilbert, F. Pirot, V. Bertholle, L. Roussel, F. Falson, and F. Padois, Commonly used UV filter toxicity on biological functions: review of last decade studies, Int. J. Cosmet. Sci., 35, 208-219 (2013).   DOI
6 V. Sharma, S. K. Singh, D. Anderson, D. J. Tobin, and A. Dhawan, Zinc oxide nanoparticle induced genotoxicity in primary human epidermal keratinocytes, J Nanosci. Nanotechnol., 11(5), 3782-3788 (2011).   DOI
7 H. C. Bae, H. J. Ryu, S. H. Jeong, E. Y. Lee, Y. H. Park, K. G. Lee, B. H. Choi, E. H. Maeng, M. K. Kim, and S. W. Son, Oxidative stress and apoptosis induced by ZnO nanoparticles in HaCaT cells, Mol. Cell. Toxicol., 7, 333-337 (2011).   DOI
8 S. Yabea and T. Satob, Cerium oxide for sunscreen cosmetics, J. Solid State Chem., 171, 7-11 (2003).   DOI
9 G. P. Dransfield, Inorganic sunscreens, Radiat. Prot. Dosimetry, 91, 271-273 (2000).   DOI
10 L. Truffault, B. Winton, B. Choquenet, C. Andreazza, C. Simmonard, T. Devers, K. Konstantinov, C. Couteau, and L. J. M. Coiffard, Cerium oxide based particles as possible alternative to ZnO in sunscreens: Effect of the synthesis method on the photoprotection results, Mater. Lett., 68, 357-360 (2012).   DOI
11 T. Herrling, M. Seifert, and K. Jung, Cerium dioxide: Future UV-filter in sunscreen, SOFW J., 139, 10-14 (2013).
12 F. Caputo, M. D. Nicola, A. Sienkiewicz, A. Giovanetti, I. Bejarano, S. Licoccia, E. Traversa, and L. Ghibelli, Cerium oxide nanoparticles, combining antioxidant and UV shielding properties, prevent UV-induced cell damage and mutagenesis, Nanoscale, 7, 15643-15656 (2015).   DOI
13 S. Das, J. M. Dowding, K. E. Klump, J. F. McGinnis, W. Self, and S. Seal, Cerium oxide nanoparticles: Applications and prospects in nanomedicine, Nanomedicine, 8, 1483-1508 (2013).   DOI
14 Y. Nakashima, S. Ohta, and A. M. Wolf, Blue light-induced oxidative stress in live skin, Free Radic. Biol. Med., 108, 300-310 (2017).   DOI
15 I. Celardo, M. D. Nicola, C. Mandoli, J. Z. Pedersen, E. Traversa, and L. Ghibelli, $Ce^{3+}$ ions determine redox-dependent anti-apoptotic effect of cerium oxide nanoparticles, ACS Nano, 5(6), 4537-4549 (2011).   DOI
16 I. Celardo, E. Traversa, and L. Ghibelli, Cerium oxide nanoparticles: a promise for applications in therapy, J. Exp. Ther. Oncol., 9(1), 47-51 (2011).
17 T. Fujimoto, Cerium oxide shielding material for ultraviolet, blue, and near-infrared light, IFSCC Conference, September 21-23, Zurich, Switzerland (2015).
18 B. F. Godley, F. A. Shamsi, F. Q. Liang, S. G. Jarrett, S. Davies, and M. Boulton, Blue light induces mitochondrial DNA damage and free radical production in epithelial cells, J. Biol. Chem., 280(22), 21061-21066 (2005).   DOI
19 L. Duteli, N. Cardot-Leccia, C. Queille-Roussel, Y. Maubert, Y. Harmelin, F. Boukari, D. Ambrosetti, J. P. Lacour, and T. Passeron, Differences in visible light-induced pigmentation according to wavelengths: A clinical and histological study in comparison with UVB exposure, Pigment Cell Melanoma Res., 27(5), 822-826 (2014).   DOI
20 C. Opländer, S. Hidding, F. B. Werners, M. Born, N. Pallua, and C. V. Suschek, Effects of blue light irradiation on human dermal fibroblasts, J. Photochem. Photobiol. B, 103(2), 118-125 (2011).   DOI
21 G. Tosini, I. Ferguson, and K. Tsubota, Effects of blue light on the circadian system and eye physiology, Mol. Vis., 22, 61-72 (2016).
22 P. Stamatkis, B. R. Palmer, and G. C. Salzman, Optimal particle size of titanium dioxide and zinc oxide for attenuation of ultraviolet radiation, J. Coat. Technol., 62, 95-98 (1990).
23 K. M Tyner, A. M. Wokovich, D. E. Godar, W. H. Doub, and N. Sadrieh, The state of nano-sized titanium dioxide ($TiO_2$) may affect sunscreen performance, Int. J. Cosmet. Sci., 33(3), 234-44 (2011).   DOI
24 K. Y. Kim and S. B. Park, Photocatalytic activity of anatase titania particles of controlled size prepared in an aerosol reactor, Korean Chem. Eng. Res., 36(1), 116-119 (1998).
25 T. A. Egerton and I. R. Tooley, UV absorption and scattering properties of inorganic-based sunscreens, Int. J. Cosmet. Sci., 34, 117-122 (2012).   DOI
26 T. A. Egerton, UV absorption-the primary process in photocatalysis and some practical consequences, Molecules, 19(11), 18192-18214 (2014).   DOI
27 K. Tanno, Current status of the mechanofusion process for producing composites particles, Kona, 8, 74-82 (1990).   DOI
28 A. P. Popov, J. Lademann, A. V. Priezzhev, and R. Myllyla, Effect of size of $TiO_2$ nanoparticles embedded into stratum corneum on ultraviolet-A and ultraviolet-B sun-blocking properties of the skin, J. Biomed. Opt., 10, 1-9 (2005).
29 M. Larsson, A. Hill, and J. Duffy, Suspension stability; why particle size: zeta potential and rheology are important, Annu. Trans. Nord. Rheol. Soc., 20, 209-214 (2012).
30 R. Konstance, C. Onwulata, and V. Holsinger, Flow properties of spray-dried encapsulated butteroil, J. Food Sci., 60(4), 841-844 (1995).   DOI