Browse > Article
http://dx.doi.org/10.12989/smm.2017.4.2.107

Strain sensing skin-like film using zinc oxide nanostructures grown on PDMS and reduced graphene oxide  

Satish, Tejus (Department of Biochemistry, Rice University)
Balakrishnan, Kaushik (Department of Materials Science and Nanoengineering, Rice University)
Gullapalli, Hemtej (Department of Materials Science and Nanoengineering, Rice University)
Nagarajaiah, Satish (Department of Materials Science and Nanoengineering, Rice University)
Vajtai, Robert (Department of Materials Science and Nanoengineering, Rice University)
Ajayan, Pulickel M. (Department of Materials Science and Nanoengineering, Rice University)
Publication Information
Structural Monitoring and Maintenance / v.4, no.2, 2017 , pp. 107-113 More about this Journal
Abstract
In this paper, we present a strain-sensitive composite skin-like film made up of piezoresistive zinc oxide (ZnO) nanorods embedded in a flexible poly(dimethylsiloxane) substrate, with added reduced graphene oxide (rGO) to facilitate connections between the nanorod clusters and increase strain sensitivity. Preparation of the composite is described in detail. Cyclic strain sensing tests are conducted. Experiments indicate that the resulting ZnO-PDMS/rGO composite film is strain-sensitive and thus capable of sensing cycling strain accurately. As such, it has the potential to be molded on to a structure (civil, mechanical, aerospace, or biological) in order to provide a strain sensing skin.
Keywords
strain sensing; flexible; skin; poly(dimethylsiloxane); reduced graphene oxide; zinc oxide;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Dharap, P., Li, Z., Nagarajaiah, S. and Barrera, E. (2004). "Nanotube film based on SWNT for macrostrain sensing", Nanotechnology J., 15(3), 379-382, DOI: 10.1088/0957-4484/15/3/026.   DOI
2 Gullapalli, H., Vemuru, V.S.M., Kumar, A., Botello-Mendez, A., Vajtai, R., Terrones, M., Nagarajaiah, S. and Ajayan, P.M. (2010). "Flexible piezoelectric ZnO-aper nanocomposite strain sensor", Small, 6(15), 1641-1646.   DOI
3 Klingshirn, C.F., Bruno K.M., Andreas W., Axel H.and Johannes M.G. (2010). Zinc Oxide: From Fundamental Properties TowardsNovel Applications, Springer, New York City, NY, USA.
4 Li, Z., Dharap, P., Nagarajaiah, S., Barrera, E. and Kim, J. D. (2004), "Carbon nanofilm sensor", Adv. Mater.J., 16(7), 640-643, DOI: 10.1002/adma.200306310.   DOI
5 Loh, K.P., Bao, Q., Eda, G.andChhowalla, M. (2010). "Graphene oxide as a chemically tunable platform for optical applications", Nature Chemistry, 2(12), 1015-1024, doi: 10.1038/nchem.907.   DOI
6 Nagarajaiah, S. and Erazo, K. (2016). "Structural monitoring and identification of civil infrastructure in the United States", Struct. Monit. Maint., 3(1), 51-69, DOI: 10.12989/smm.2016.3.1.051.   DOI
7 Park, G., Rosing, T., Todd, M.D., Farrar, C.R.and Hodgkiss, W. (2008),."Energy harvesting for structural health monitoring sensor networks", ASCE J. Infrastruct. Syst., 14, 64-79.   DOI
8 Sun, P., Bachilo, S., Weisman, M. and Nagarajaiah, S. (2015). "Carbon nanotubes as non-contact optical strain sensors in smart skins", J. Strain Anal. Eng.Des., 50(7), 505-512, DOI: 10.1177/0309324715597414.   DOI
9 Sun, P., Bachilo, S.M., Nagarajaiah, S. and Weisman, R.B. (2016). "Toward practical non-contact optical strain sensing using single-walled carbon nanotubes", ECS J. Solid State Sci. Technol., 5(8), M3012-M3017, DOI: 10.1149/2.0031608jss.   DOI
10 Tang, Y., Zhao, Z., Hu, H., Liu, Y., Wang, X., Zhou, S.andQiu, J. (2015)."Highly stretchable and ultrasensitive strain sensor based on reduced graphene oxide microtubes-elastomer composite", ACS Appl. Mater. Interfaces, 7, 27432-27439, doi: 10.1021/acsami.5b09314.   DOI
11 Trung, T.Q., Tien, N.T., Kim, D., Jang, M., Yoon, O.J. and Lee, N.E. (2014). "A flexible reduced graphene oxide field-effect transistor for ultrasensitive strain sensing", Adv. Funct. Mater., 24, 117-124.   DOI
12 Withey, P.A., Vemuru, V.S.M., Bachilo, S.M. and Nagarajaiah, S. and Weisman, R.B. (2012). "Strain paint: noncontact strain measurement using single-walled carbon nanotube composite coatings", Nano Letters, ACS, 12(2), 3497-3500, DOI: 10.1021/nl301008m.   DOI