• Title/Summary/Keyword: Composite nanoparticles

Search Result 330, Processing Time 0.022 seconds

Effect of Silicon Oxynitride Matrix on the Optical Properties of Au Nanoparticles Dispersed Composite Film (실리콘 산화질화물 기지상 적용에 따른 Au 나노입자 분산 복합체 박막의 광학적 특성)

  • Cho, Sung-Hun;Lee, Kyeong-Seok
    • Korean Journal of Materials Research
    • /
    • v.19 no.12
    • /
    • pp.637-643
    • /
    • 2009
  • In this study, we analyzed the effect of silicon oxynitride matrix on the optical properties of Au nanoparticles dispersed on composite film and explored the effectiveness of the silicon in fine tuning the refractive index of the composite film for applications in optical waveguide devices. The atomic fraction of nitrogen in $SiO_xN_y$ films was controlled by varying the relative flow ratio of nitrogen gas in reactive sputtering and was evaluated optically using an effective medium theory with Bruggeman geometry consisting of a random mixture between $SiO_2$ and $Si_3N_4$. The Au nanoparticles were embedded in the $SiO_xN_y$ matrix by employing the alternating deposition technique and clearly showed an absorption peak due to the excitation of surface plasmon. With increasing nitrogen atomic fraction in the matrix, the surface plasmon resonance wavelength shifted to a longer wavelength (a red-shift) with an enhanced resonance absorption. These characteristics were interpreted using the Maxwell-Garnett effective medium theory. The formation of a guided mode in a slab waveguide consisting of 3 $\mu$m thick Au:$SiO_xN_y$ nanocomposite film was confirmed at the telecommunication wavelength of 1550 nm by prism coupler method and compared with the case of using $SiO_2$ matrix. The use of $SiO_xN_y$ matrix provides an effective way of controlling the mode confinement while maintaining or even enhancing the surface plasmon resonance properties.

Development of Polyvinyl Alcohol (PVA) Non-woven Separator Coated with ZrO2 Ceramic Nanoparticles for Improving Electrochemical Performance and Thermal Property of Lithium Ion Batteries (열 특성 및 전기화학 특성이 향상된 리튬이차전지용 ZrO2 코팅 PVA (Polyvinyl Alcohol) 복합 부직포 분리막 개발)

  • Kim, Ki Jae
    • Journal of the Korean Electrochemical Society
    • /
    • v.20 no.3
    • /
    • pp.49-54
    • /
    • 2017
  • We develop a ceramic composite separator prepared by coating $ZrO_2$ nanoparticles with a poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) copolymer on a polyvinyl alcohol (PVA) mechanical support prepared by electrospinning technique to improve thermal properties. The gurley number of the ceramic composite separator shows much lower value than that of a PE separator even though it possesses the polymeric coating layer with ceramic nanoparticles. In addition, the proposed sample shows higher electrolyte uptake than PE separator, leading to enhancing the ionic conductivity of the proposed sample and, by extension, the rate discharge properties of lithium ion batteries. Thermal stability of the ceramic composite separator is dramatically improved without any degradation in electrochemical performance compared to the performance of conventional PE separators.

Composite PEO-Coatings as Defence Against Corrosion and Wear: A Review

  • Gnedenkov, S.V.;Sinebryukhov, S.L.;Sergienko, V.I.;Gnedenkov, A.S.
    • Corrosion Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.212-219
    • /
    • 2019
  • This paper reviews recent approaches to develop composite polymer-containing coatings by plasma electrolytic oxidation (PEO) using various low-molecular fractions of superdispersed polytetrafluoroethylene (SPTFE). The features of the unique approaches to form the composite polymer-containing coating on the surface of MA8 magnesium alloy were summarized. Improvement in the corrosion and tribological behavior of the polymer-containing coating can be attributed to the morphology and insulating properties of the surface layers and solid lubrication effect of the SPTFE particles. Such multifunctional coatings have high corrosion resistance ($R_p=3.0{\times}10^7{\Omega}cm^2$) and low friction coefficient (0.13) under dry wear conditions. The effect of dispersity and ${\xi}$-potential of the nanoscale materials ($ZrO_2$ and $SiO_2$) used as electrolyte components for the plasma electrolytic oxidation on the composition and properties of the coatings was investigated. Improvement in the protective properties of the coatings with the incorporated nanoparticles was explained by the greater thickness of the protective layer, relatively low porosity, and the presence of narrow non-through pores. The impedance modulus measured at low frequency for the zirconia-containing layer (${\mid}Z{\mid}_{f=0.01Hz}=1.8{\times}10^6{\Omega}{\cdot}cm^2$) was more than one order of magnitude higher than that of the PEO-coating formed in the nanoparticles-free electrolyte (${\mid}Z{\mid}_{f=0.01Hz}=5.4{\times}10^4{\Omega}{\cdot}cm^2$).

Calcination Condition of CsPbBr3-SiO2 Composite Nanoparticles (CsPbBr3-SiO2 복합 나노입자의 소결 조건 연구)

  • Jeon, Min-Gi;Kabir, Rezaul MD;Kirakosyan, Artavazd;Choi, Jihoon
    • Composites Research
    • /
    • v.35 no.4
    • /
    • pp.298-302
    • /
    • 2022
  • Owing to the superior optoelectronic properties, halide perovskites have emerged as next-generation materials for display application. In this study, we reported a novel route for CsPbBr3 calcination into porous SiO2 nanoparticles to overcome the stability issues of halide perovskite via a spatial confinement of crystal growth within SiO2 pores. The resulting CsPbBr3-SiO2 nanoparticles exhibited the photoluminescence (PL) emission peak at 515 nm under optimal calcination condition. In several polar solvents, PL properties of CsPbBr3-SiO2 nanoparticles was maintained owing to the enclosed pores during calcination process, suggesting their promising application for display color conversion film.

Embargo Nature of CuO-PANI Composite Against Corrosion of Mild Steel in Low pH Medium

  • Selvaraj, P. Kamatchi;Sivakumar, S.;Selvaraj, S.
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.139-147
    • /
    • 2019
  • Incorporation of CuO nanoparticles during the polymerization of aniline in the presence of ammonium peroxydisulphate as an oxidizing agent and sodium salt of dodecylbenzene sulphonic acid as dopant as well as surfactant yielded water soluble CuO-PANI composite. Comparison of recorded spectra like FTIR, XRD and SEM with reported one confirm the formation of the composite. Analysis by gravimetric method exposes that the synthesized composite is having resistivity against corrosion, with slight variation in efficiency on extending the time duration up to eight hours in strong acidic condition. OCP measurement, potentiodynamic polarization and EIS studies also confirms the suppression ability of composite against corrosion. Riskless working environment could be provided by the synthesized composite during industrial cleaning process.

Synthesis of $TiO_2$ nantubes coupled with ${\alpha}-Fe_2O_3$ nanoparticles and investigation of their photoelectrochemical activity

  • Mao, Aiming;Park, Jong-Hyeok;Han, Gui-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.99-102
    • /
    • 2009
  • $TiO_2$ nanotube arraysdecorated with ${\alpha}-Fe_2O_3$ were prepared by forming a nanotube-like $TiO_2$ film on a Ti sheet using an anodization process, followed by electrochemical deposition treatment to decorate hematite (${\alpha}-Fe_2O_3$) nanoparticles on the $TiO_2$ nanotube arrays. The SEM and XRD results revealed that the ${\alpha}-Fe_2O_3$ nanoparticles were homogeneously embedded on the surface of the $TiO_2$ nanotube arrays. The activity of hydrogen production by photocatalytic water decomposition for the ${\alpha}-Fe_2O_3/TiO_2$ nanotube array composite was examined under visible light irradiation.

  • PDF

Agglomeration effects on the buckling behaviour of embedded concrete columns reinforced with SiO2 nano-particles

  • Zamanian, Mohammad;Kolahchi, Reza;Bidgoli, Mahmood Rabani
    • Wind and Structures
    • /
    • v.24 no.1
    • /
    • pp.43-57
    • /
    • 2017
  • The use of nanotechnology materials and applications in the construction industry should be considered for enhancing material properties. However, the nonlinear buckling of an embedded straight concrete columns reinforced with silicon dioxide ($SiO_2$) nanoparticles is investigated in the present study. The column is simulated mathematically with Euler-Bernoulli and Timoshenko beam models. Agglomeration effects and the characteristics of the equivalent composite are determined using Mori-Tanaka approach. The foundation around the column is simulated with spring and shear layer. The governing equations are derived using energy method and Hamilton's principal. Differential quadrature method (DQM) is used in order to obtain the buckling load of structure. The influences of volume percent of $SiO_2$ nanoparticles, geometrical parameters and agglomeration on the buckling of column are investigated. Numerical results indicate that considering agglomeration effects leads to decrease in buckling load of structure.

Vibration and instability of nanocomposite pipes conveying fluid mixed by nanoparticles resting on viscoelastic foundation

  • Natanzi, Abolfazl Jafari;Jafari, Gholamreza Soleimani;Kolahchi, Reza
    • Computers and Concrete
    • /
    • v.21 no.5
    • /
    • pp.569-582
    • /
    • 2018
  • In this study, nonlinear vibration and stability of a polymeric pipe reinforced by single-walled carbon naotubes (SWCNTs) conveying fluid-nanoparticles mixture flow is investigated. The Characteristics of the equivalent composite are determined using Mori-Tanaka model considering agglomeration effects. The surrounding elastic medium is simulated by orthotropic visco-Pasternak medium. Employing nonlinear strains-displacements, stress-strain energy method the governing equations were derived using Hamilton's principal. Differential quadrature method (DQM) is used for obtaining the frequency and critical fluid velocity. The influence of volume percent of SWCNTs, agglomeration, geometrical parameters of pipe, viscoelastic foundation and fluid velocity are shown on the frequency and critical fluid velocity of pipe. Results showed the increasing volume percent of SWCNTs leads to higher frequency and critical fluid velocity.

PMMA Coated BaF2:Er3+ Nanoparticles via a Novel One-Step Reverse-Emulsion Polymerization Process

  • Lian, Hongzhou;Fu, Lianshe;Andre, Paulo S.;Lin, Jun
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.8
    • /
    • pp.2451-2454
    • /
    • 2013
  • Poly(methyl methacrylate) coated $BaF_2:Er^{3+}$ nanoparticles were prepared via a novel reverse-emulsion polymerization process using methyl methacrylate as continuous phase and water as dispersed phase. Preparation and coating of $BaF_2:Er^{3+}$ particles were processed in a single step. The resulting polymeric composites show the characteristic $Er^{3+}$ luminescence at excitation of 980 nm and may have potential applications in amplified optical networks.

Nonlocal strain gradient 3D elasticity theory for anisotropic spherical nanoparticles

  • Karami, Behrouz;Janghorban, Maziar;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.27 no.2
    • /
    • pp.201-216
    • /
    • 2018
  • In this paper, three-dimensional (3D) elasticity theory in conjunction with nonlocal strain gradient theory (NSGT) is developed for mechanical analysis of anisotropic nanoparticles. The present model incorporates two scale coefficients to examine the mechanical characteristics much accurately. All the elastic constants are considered and assumed to be the functions of (r, ${\theta}$, ${\varphi}$), so all kind of anisotropic structures can be modeled. Moreover, all types of functionally graded spherical structures can be investigated. To justify our model, our results for the radial vibration of spherical nanoparticles are compared with experimental results available in the literature and great agreement is achieved. Next, several examples of the radial vibration and wave propagation in spherical nanoparticles including nonlocal strain gradient parameters are presented for more than 10 different anisotropic nanoparticles. From the best knowledge of authors, it is the first time that 3D elasticity theory and NSGT are used together with no approximation to derive the governing equations in the spherical coordinate. Moreover, up to now, the NSGT has not been used for spherical anisotropic nanoparticles. It is also the first time that all the 36 elastic constants as functions of (r, ${\theta}$, ${\varphi}$) are considered for anisotropic and functionally graded nanostructures including size effects. According to the lack of any common approximations in the displacement field or in elastic constant, present theory can be assumed as a benchmark for future works.