DOI QR코드

DOI QR Code

Effect of Silicon Oxynitride Matrix on the Optical Properties of Au Nanoparticles Dispersed Composite Film

실리콘 산화질화물 기지상 적용에 따른 Au 나노입자 분산 복합체 박막의 광학적 특성

  • Cho, Sung-Hun (Thin Film Materials Research Center, Korea Institute of Science and Technology) ;
  • Lee, Kyeong-Seok (Thin Film Materials Research Center, Korea Institute of Science and Technology)
  • 조성훈 (한국과학기술연구원 박막재료연구센터) ;
  • 이경석 (한국과학기술연구원 박막재료연구센터)
  • Published : 2009.12.27

Abstract

In this study, we analyzed the effect of silicon oxynitride matrix on the optical properties of Au nanoparticles dispersed on composite film and explored the effectiveness of the silicon in fine tuning the refractive index of the composite film for applications in optical waveguide devices. The atomic fraction of nitrogen in $SiO_xN_y$ films was controlled by varying the relative flow ratio of nitrogen gas in reactive sputtering and was evaluated optically using an effective medium theory with Bruggeman geometry consisting of a random mixture between $SiO_2$ and $Si_3N_4$. The Au nanoparticles were embedded in the $SiO_xN_y$ matrix by employing the alternating deposition technique and clearly showed an absorption peak due to the excitation of surface plasmon. With increasing nitrogen atomic fraction in the matrix, the surface plasmon resonance wavelength shifted to a longer wavelength (a red-shift) with an enhanced resonance absorption. These characteristics were interpreted using the Maxwell-Garnett effective medium theory. The formation of a guided mode in a slab waveguide consisting of 3 $\mu$m thick Au:$SiO_xN_y$ nanocomposite film was confirmed at the telecommunication wavelength of 1550 nm by prism coupler method and compared with the case of using $SiO_2$ matrix. The use of $SiO_xN_y$ matrix provides an effective way of controlling the mode confinement while maintaining or even enhancing the surface plasmon resonance properties.

Keywords

References

  1. A. Miller, K. R. Welford, and B. Diano, Nolinear optical materials and devices for applications in information technology, Nato ASI ser. vol. 289, p. 104, Kluwer Academic Publisher, Netherlands, (1993)
  2. O. Wada, New J. Phys., 6, 183 (2004) https://doi.org/10.1088/1367-2630/6/1/183
  3. P. Chakraborty, J. Mat. Sci., 33, 2235 (1998) https://doi.org/10.1023/A:1004306501659
  4. F. Gonella and P. Mazzoldi, Handbook of nanostructured materials and nanotechnology, vol. 4, chap. 2., p. 81, ed. H. S. Nalwa, Academic Press, San Diego, (2000)
  5. T. Okamoto, M. Haraguchi, and M. Fukui, Jpn. J. Appl. Phys., 39, 3977 (2000) https://doi.org/10.1143/JJAP.39.3977
  6. K. S. Lee, T. S. Lee, W. M. Kim, S. Cho, and S. Lee, Appl. Phys. Lett., 91, 141905 (2007) https://doi.org/10.1063/1.2795338
  7. D. Dalacu and L. Martinu, J. Opt. Soc. Am. B, 18, 85 (2001) https://doi.org/10.1364/JOSAB.18.000085
  8. J. Wang, W. M. Lau, and Q. Li, J. Appl. Phys., 97, 114303 (2005) https://doi.org/10.1063/1.1868052
  9. J. S. Lee, K. -H. Koo, and H.-H. Park, Kor. J. Mater. Res., 19(10), 527 (in Korean) (2009) https://doi.org/10.3740/MRSK.2009.19.10.527
  10. F. Hache, D. Ricard, and C. Flytzanis, J. Opt. Soc. Am. B, 3, 1647 (1986) https://doi.org/10.1364/JOSAB.3.001647
  11. H. S. Jun, K. S. Lee, S. H. Yoon, T. S. Lee, I. H. Kim, J. H. Jeong, B. Cheong, D. S. Kim, K. M. Cho, and W. M. Kim, Phys. Stat. Sol. (a), 203, 1211 (2006) https://doi.org/10.1002/pssa.200566146
  12. S. Cho, S. Lee, T. S. Lee, B. Cheong, W. M. Kim, and K. S. Lee, J. Appl. Phys., 102, 123501 (2007) https://doi.org/10.1063/1.2823611
  13. X. Tan, J. Wojcik and P. Mascher, J. Vac. Sci. Technol. A, 22, 1115 (2004) https://doi.org/10.1116/1.1752898
  14. I. Tanahashi, Y. Manabe, T. Tohda, S. Sasaki, A. Nakamura, J. Appl. Phys., 79, 1244 (1996) https://doi.org/10.1063/1.361018
  15. S. H. Cho, S. Lee, D. Y. Ku, T. S. Lee, B. Cheong, W. M. Kim, and K. S. Lee, Thin Solid Films, 447-448, 68 (2004) https://doi.org/10.1016/j.tsf.2003.09.024
  16. H. Wang, J. Opt. Soc. Am. A, 11, 2331 (1994) https://doi.org/10.1364/JOSAA.11.002331
  17. L. Pinard and J. M. Mackowski, Appl. Opt., 36, 5451 (1997) https://doi.org/10.1364/AO.36.005451
  18. M. Modreanu, N. Tomozeiu, P. Cosmin and M. Gartner, Thin Solid Films, 337, 82 (1999) https://doi.org/10.1016/S0040-6090(98)01189-4
  19. H. R. Philipp, Handbook of optical constants of solids, vol. 1, p.759, p.774, ed. E. D. Palik, Academic press, New York, (1985)
  20. D. Ricard, P. Roussognal and C. Flytzanis, Opt. Lett., 10, 511 (1985) https://doi.org/10.1364/OL.10.000511
  21. U. Kreibig and M. Vollmer, Optical properties of metal clusters, p.80, Springer, Berin, (1995)
  22. T. Liu and R. Samuels, J. Polym. Sci. B, 39, 2481 (2001) https://doi.org/10.1002/polb.1220
  23. S.-L. Li, K. M. Wang, F. Chen, X.-L. Wang, and G. Fu, Opt. Exp., 12, 747 (2004) https://doi.org/10.1364/OPEX.12.000747