DOI QR코드

DOI QR Code

Embargo Nature of CuO-PANI Composite Against Corrosion of Mild Steel in Low pH Medium

  • Selvaraj, P. Kamatchi (P.G and Research Dept. of Chemistry, Govt. Arts College for Men (Aut)) ;
  • Sivakumar, S. (Manonmaniam Sundarnar University) ;
  • Selvaraj, S. (P.G and Research Dept. of Chemistry, Govt. Arts College for Men (Aut))
  • Received : 2018.05.30
  • Accepted : 2018.10.29
  • Published : 2019.06.30

Abstract

Incorporation of CuO nanoparticles during the polymerization of aniline in the presence of ammonium peroxydisulphate as an oxidizing agent and sodium salt of dodecylbenzene sulphonic acid as dopant as well as surfactant yielded water soluble CuO-PANI composite. Comparison of recorded spectra like FTIR, XRD and SEM with reported one confirm the formation of the composite. Analysis by gravimetric method exposes that the synthesized composite is having resistivity against corrosion, with slight variation in efficiency on extending the time duration up to eight hours in strong acidic condition. OCP measurement, potentiodynamic polarization and EIS studies also confirms the suppression ability of composite against corrosion. Riskless working environment could be provided by the synthesized composite during industrial cleaning process.

Keywords

E1JTC5_2019_v10n2_139_f0001.png 이미지

Fig. 2. XRD spectra of (a) PANI (b) CuO-PANI.

E1JTC5_2019_v10n2_139_f0002.png 이미지

Fig. 3. SEM of (a) image of CuO (b) CuO-PANI composite.

E1JTC5_2019_v10n2_139_f0003.png 이미지

Fig. 4.Change in efficiency of CuO-PANI composite with concentration and time in 1 M H2SO4

E1JTC5_2019_v10n2_139_f0004.png 이미지

Fig. 5. Change in efficiency of CuO-PANI composite with concentration and time in 2 M H2SO4.

E1JTC5_2019_v10n2_139_f0005.png 이미지

Fig. 6. OCP plot for mild steel in 1 M H2SO4.

E1JTC5_2019_v10n2_139_f0006.png 이미지

Fig. 7. OCP plot for mild steel in 2 M H2SO4.

E1JTC5_2019_v10n2_139_f0007.png 이미지

Fig. 8. Tafel plots of mild steel in 1M blank and test solutions.

E1JTC5_2019_v10n2_139_f0008.png 이미지

Fig. 9. Tafel plots of mild steel in 2M blank and test solutions.

E1JTC5_2019_v10n2_139_f0009.png 이미지

Fig. 10. Nyquist plot for mild steel in 1M blank and test solution.

E1JTC5_2019_v10n2_139_f0010.png 이미지

Fig. 11. Nyquist plot for mild steel in 2M blank and test solution.

E1JTC5_2019_v10n2_139_f0011.png 이미지

Fig. 1. (a) FTIR Spectrum of CuO (b) FTIR Spectrum of PANI (c) FTIR Spectrum of PANI-CuO

Table 1. Inhibition efficiency and surface coverage values obtained from the weight loss measurement in 1M blank and test solutions.

E1JTC5_2019_v10n2_139_t0001.png 이미지

Table 2. Inhibition efficiency and surface coverage values obtained from the weight loss measurement in 2M blank and test solutions.

E1JTC5_2019_v10n2_139_t0002.png 이미지

Table 3. Potentiodynamic Polarization Parameters of mild steel in 1M blank and test solution

E1JTC5_2019_v10n2_139_t0003.png 이미지

Table 4. Potentiodynamic Polarization Parameters of Mild Steel in 2M blank and test solution

E1JTC5_2019_v10n2_139_t0004.png 이미지

Table 5. EIS parameters for Mild Steel in 1M blank and test solution

E1JTC5_2019_v10n2_139_t0005.png 이미지

Table 6. EIS parameters for Mild Steel in 2M blank and test solution

E1JTC5_2019_v10n2_139_t0006.png 이미지

References

  1. Wang, D., Bierwagen, G.P., Prog. Org. Coat., 2009, 64(4), 327-338. https://doi.org/10.1016/j.porgcoat.2008.08.010
  2. Gerengi, H., Sahin, H.I., 2011,Ind. Eng. Chem. Res, 2011, 51(2), 780-787. https://doi.org/10.1021/ie201776q
  3. Khan, I., Saeed, K., Khan, I., Arabian. J. Chem., 2017.
  4. Chang, M., Liu, H. S., Tai, C.Y., Powder Technol., 2011, 207(1-3), 378-386. https://doi.org/10.1016/j.powtec.2010.11.022
  5. Liu, j., Huang, X., Ye, G., Liu, W., Jiao, Z., Chao,W., Zhou, Z., and Yu, Z., Sensors, 2003, 3(5), 110-118. https://doi.org/10.3390/s30500110
  6. EIKhashab, R.A.M., Nayl, A.A., Badawy, E.M., EI Malah, T.A., J. Chem. Chem. Eng., 2016, 10, 341-346.
  7. Samarasekara, P., Arachchi, M.M., Abeydeera, A. S., Fernando, C. A. N., Disanayake, A. S., and Rajapakse, R. M. G., Bull. Mater. Sci., 2005, 28(5), 483-486. https://doi.org/10.1007/BF02711241
  8. Lavareda, G., Carvalho, C., Ferraria, A.M., Rego, A.M., Amaral A., J. Nanosci. Nanotechnol., 2012, 12(8), 6754-6757. https://doi.org/10.1166/jnn.2012.4556
  9. Shahsavani, E., Feizi, N., Dehno Khalaji, A., J Ultrafine Grained Nanostruct Mater., 2016, 49(1), 48-50.
  10. Abbasiana, H., Ghanbaria, D., Nabiyouni, G., J. Nanostruct., 2013, 3(4), 429-434.
  11. Outokesh, M., Hosseinpour, M., Ahmadi, S. J., Mousavand, T., Sadjadi, S., Soltanian, W., Ind. Eng. Chem. Res., 2011, 50(6), 3540-3554. https://doi.org/10.1021/ie1017089
  12. Manimaran, R., Palaniradja, K., Alagumurthi, N., Sendhilnathan, S., Hussain, J., Appl. Nanosci., 2014, 4(2), 163-167. https://doi.org/10.1007/s13204-012-0184-7
  13. Zhu, C.L., Chou, S.W., He, S.F., Liao, W.N., and Chen, C.C., Nanotechnology., 2007, 18(27), 275604. https://doi.org/10.1088/0957-4484/18/27/275604
  14. Maeda, S., and Armes, S. P., Chem. Mater., 1995, 7(1), 171-178. https://doi.org/10.1021/cm00049a026
  15. Chuang, F.Y, Yang, S.M., J. Colloid. Interface Sci., 2008, 320(1), 194-201. https://doi.org/10.1016/j.jcis.2008.01.015
  16. Goller, M. I., Barthet, C., McCarthy, G. P., Corradi. R., Newby, B. P., Wilson, S. A., Armes, S. P., and Luk. S. Y., Colloid Polym.Sci., 1998, 276(11), 1010-1018. https://doi.org/10.1007/s003960050340
  17. Huang, C. L., Matijevic, E., J. Mater. Res., 1995, 10(5), 1327-1326 https://doi.org/10.1557/JMR.1995.1327
  18. Sathiyanarayanan, S., Muthukrishnan, S., Venkatachari, G., Trivedi, D.C., Prog. Org. Coat., 2005, 53(4), 297-301. https://doi.org/10.1016/j.porgcoat.2005.03.007
  19. Phiwdang, K., Suphankij, S., Mekprasart, W., Pecharapa, W., Energy Procedia., 2013, 34, 740-745. https://doi.org/10.1016/j.egypro.2013.06.808
  20. Dubal, D.P., Dhawale, D.S., Salunkhe, R.R., Jamdade, V.S., Lokhande, C.D., J Alloys Compd., 2010, 492(1-2), 26-30. https://doi.org/10.1016/j.jallcom.2009.11.149
  21. Sivakumar, S., Kamatchi Selvaraj, P., Selvaraj, S., Asian J. Chem., 2018, 30(9), 2043-2048. https://doi.org/10.14233/ajchem.2018.21402
  22. (a) Kamatchi Selvaraj, P., Sivakumar, S., Selvaraj, S., Int. J. Chem. Sci., 2018, 16(2), 268.
  23. (b) Kamatchi Selvaraj P., Sivakumar S., Selvaraj S., Orient. J. Chem., 2018, 34(4), 1832-1841. https://doi.org/10.13005/ojc/3404017
  24. Xu, Y., Chen, D., Jiao, X., J. Phys. Chem.B., 2005, 109(28), 13561-13566. https://doi.org/10.1021/jp051577b
  25. Balamurugan, S., Balu, A.R., Usharani, K., Suganya, M., Anitha, S., Prabha D., Ilangovan, S., Pac. Sci. Rev.; Nat. Sci. Engg., 2016, 18(3), 228-232.
  26. Kaviyarasu K., Manikandan E., Paulraj P., Mohamed S.B., Kennedy J., J. Alloys Compd., 2014, 593, 67-70. https://doi.org/10.1016/j.jallcom.2014.01.071
  27. Sathiyanarayanan, S., Azim, S.S., Venkatachari, G., Electrochim. Acta., 2007, 52(5), 2068-2074. https://doi.org/10.1016/j.electacta.2006.08.022
  28. Yi, Y., Liu, G., Jin, Z., Feng, D., Int. J. Electrochem. Sci., 2013, 8, 3540-3550.
  29. Gao, H., Jiang, T., Han, B., Wang, Y., Du, J., Lui, Z., Zhang, J., Polymer., 2004, 45(9), 3017-3019. https://doi.org/10.1016/j.polymer.2004.03.002
  30. Swaruparani. H., Basavaraja, S., Basavaraja, C., Huh, D.S., Venkataraman A., J. Appl. Polym. Sci.,., 2010, 117(3), 1350-1360. https://doi.org/10.1002/app.31745
  31. Bu, I.Y., Huang, R., Ceramics International., 2016, 43(1), 45-50. https://doi.org/10.1016/j.ceramint.2016.08.136
  32. Bai D, D., Survarna, R.P., Ind. J. Sci. Tech., 2017, 10(4).
  33. Raja, S., Deepa, M., Ind. J. Adv. Chem. Sci., 2015, 3(2), 198-203.
  34. Jundale, D. M., Navale, S. T., Khuspe, G. D., Dalavi, D. S., Patil, P. S., Patil, V. B., J. Mater Sci. Mater Electron., 2013, 24(9), 3526-3535. https://doi.org/10.1007/s10854-013-1280-5
  35. Ghanbari, K., Babaei, Z., Analytical Biochemistry., 2016, 498, 37-46. https://doi.org/10.1016/j.ab.2016.01.006
  36. Singh, A.K., Quraishi, M.A., Corrosion Science., 2010, 52(4), 1373-1385. https://doi.org/10.1016/j.corsci.2010.01.007
  37. Wessling, B., Posdorfer, J., Electrochim. Acta., 1999, 44(12), 2139-2147. https://doi.org/10.1016/S0013-4686(98)00322-3
  38. Jafari, Y., Ghoreishi, S.M., Shabani-Nooshabadi, M., J. Polym. Res., 2016, 23(5) 19. https://doi.org/10.1007/s10965-015-0912-2
  39. Jayaprabha, C., Sathiyanarayanan, S., Venkatachari, G., J. Appl. Polym. Sci., 2006, 101(4), 2144-2153. https://doi.org/10.1002/app.22579
  40. Mansfeld, F., Kendig, M.W., Tsai, S., Corrosion., 1982, 38(11), 570-580. https://doi.org/10.5006/1.3577304
  41. Qiang, Y., Zhang, S., Xu, S., Li, W., J. Colloid. Interface Sci., 2016, 472, 52-59. https://doi.org/10.1016/j.jcis.2016.03.023
  42. Olasunkanmi, L.O., Obot, I.B., Kabanda, M.M., Ebenso, E.E., J. Phys. Chem. C., 2015, 119(28), 16004-16019. https://doi.org/10.1021/acs.jpcc.5b03285