Browse > Article
http://dx.doi.org/10.3740/MRSK.2009.19.12.637

Effect of Silicon Oxynitride Matrix on the Optical Properties of Au Nanoparticles Dispersed Composite Film  

Cho, Sung-Hun (Thin Film Materials Research Center, Korea Institute of Science and Technology)
Lee, Kyeong-Seok (Thin Film Materials Research Center, Korea Institute of Science and Technology)
Publication Information
Korean Journal of Materials Research / v.19, no.12, 2009 , pp. 637-643 More about this Journal
Abstract
In this study, we analyzed the effect of silicon oxynitride matrix on the optical properties of Au nanoparticles dispersed on composite film and explored the effectiveness of the silicon in fine tuning the refractive index of the composite film for applications in optical waveguide devices. The atomic fraction of nitrogen in $SiO_xN_y$ films was controlled by varying the relative flow ratio of nitrogen gas in reactive sputtering and was evaluated optically using an effective medium theory with Bruggeman geometry consisting of a random mixture between $SiO_2$ and $Si_3N_4$. The Au nanoparticles were embedded in the $SiO_xN_y$ matrix by employing the alternating deposition technique and clearly showed an absorption peak due to the excitation of surface plasmon. With increasing nitrogen atomic fraction in the matrix, the surface plasmon resonance wavelength shifted to a longer wavelength (a red-shift) with an enhanced resonance absorption. These characteristics were interpreted using the Maxwell-Garnett effective medium theory. The formation of a guided mode in a slab waveguide consisting of 3 $\mu$m thick Au:$SiO_xN_y$ nanocomposite film was confirmed at the telecommunication wavelength of 1550 nm by prism coupler method and compared with the case of using $SiO_2$ matrix. The use of $SiO_xN_y$ matrix provides an effective way of controlling the mode confinement while maintaining or even enhancing the surface plasmon resonance properties.
Keywords
surface plasmon resonance; metal-dielectric nanocomposite; effective medium theory; silicon oxynitride matrix;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By SCOPUS : 45
연도 인용수 순위
1 S. Cho, S. Lee, T. S. Lee, B. Cheong, W. M. Kim, and K. S. Lee, J. Appl. Phys., 102, 123501 (2007)   DOI   ScienceOn
2 A. Miller, K. R. Welford, and B. Diano, Nolinear optical materials and devices for applications in information technology, Nato ASI ser. vol. 289, p. 104, Kluwer Academic Publisher, Netherlands, (1993)
3 O. Wada, New J. Phys., 6, 183 (2004)   DOI   ScienceOn
4 P. Chakraborty, J. Mat. Sci., 33, 2235 (1998)   DOI   ScienceOn
5 F. Gonella and P. Mazzoldi, Handbook of nanostructured materials and nanotechnology, vol. 4, chap. 2., p. 81, ed. H. S. Nalwa, Academic Press, San Diego, (2000)
6 T. Okamoto, M. Haraguchi, and M. Fukui, Jpn. J. Appl. Phys., 39, 3977 (2000)   DOI
7 K. S. Lee, T. S. Lee, W. M. Kim, S. Cho, and S. Lee, Appl. Phys. Lett., 91, 141905 (2007)   DOI   ScienceOn
8 D. Dalacu and L. Martinu, J. Opt. Soc. Am. B, 18, 85 (2001)   DOI   ScienceOn
9 J. Wang, W. M. Lau, and Q. Li, J. Appl. Phys., 97, 114303 (2005)   DOI   ScienceOn
10 J. S. Lee, K. -H. Koo, and H.-H. Park, Kor. J. Mater. Res., 19(10), 527 (in Korean) (2009)   DOI   ScienceOn
11 F. Hache, D. Ricard, and C. Flytzanis, J. Opt. Soc. Am. B, 3, 1647 (1986)   DOI
12 H. S. Jun, K. S. Lee, S. H. Yoon, T. S. Lee, I. H. Kim, J. H. Jeong, B. Cheong, D. S. Kim, K. M. Cho, and W. M. Kim, Phys. Stat. Sol. (a), 203, 1211 (2006)   DOI   ScienceOn
13 X. Tan, J. Wojcik and P. Mascher, J. Vac. Sci. Technol. A, 22, 1115 (2004)   DOI   ScienceOn
14 I. Tanahashi, Y. Manabe, T. Tohda, S. Sasaki, A. Nakamura, J. Appl. Phys., 79, 1244 (1996)   DOI
15 S. H. Cho, S. Lee, D. Y. Ku, T. S. Lee, B. Cheong, W. M. Kim, and K. S. Lee, Thin Solid Films, 447-448, 68 (2004)   DOI   ScienceOn
16 H. Wang, J. Opt. Soc. Am. A, 11, 2331 (1994)   DOI   ScienceOn
17 L. Pinard and J. M. Mackowski, Appl. Opt., 36, 5451 (1997)   DOI
18 M. Modreanu, N. Tomozeiu, P. Cosmin and M. Gartner, Thin Solid Films, 337, 82 (1999)   DOI   ScienceOn
19 H. R. Philipp, Handbook of optical constants of solids, vol. 1, p.759, p.774, ed. E. D. Palik, Academic press, New York, (1985)
20 D. Ricard, P. Roussognal and C. Flytzanis, Opt. Lett., 10, 511 (1985)   DOI
21 U. Kreibig and M. Vollmer, Optical properties of metal clusters, p.80, Springer, Berin, (1995)
22 T. Liu and R. Samuels, J. Polym. Sci. B, 39, 2481 (2001)   DOI   ScienceOn
23 S.-L. Li, K. M. Wang, F. Chen, X.-L. Wang, and G. Fu, Opt. Exp., 12, 747 (2004)   DOI