Browse > Article
http://dx.doi.org/10.14773/cst.2019.18.5.212

Composite PEO-Coatings as Defence Against Corrosion and Wear: A Review  

Gnedenkov, S.V. (Institute of Chemistry Far Eastern Branch of Russian Academy of Sciences)
Sinebryukhov, S.L. (Institute of Chemistry Far Eastern Branch of Russian Academy of Sciences)
Sergienko, V.I. (Institute of Chemistry Far Eastern Branch of Russian Academy of Sciences)
Gnedenkov, A.S. (Institute of Chemistry Far Eastern Branch of Russian Academy of Sciences)
Publication Information
Corrosion Science and Technology / v.18, no.5, 2019 , pp. 212-219 More about this Journal
Abstract
This paper reviews recent approaches to develop composite polymer-containing coatings by plasma electrolytic oxidation (PEO) using various low-molecular fractions of superdispersed polytetrafluoroethylene (SPTFE). The features of the unique approaches to form the composite polymer-containing coating on the surface of MA8 magnesium alloy were summarized. Improvement in the corrosion and tribological behavior of the polymer-containing coating can be attributed to the morphology and insulating properties of the surface layers and solid lubrication effect of the SPTFE particles. Such multifunctional coatings have high corrosion resistance ($R_p=3.0{\times}10^7{\Omega}cm^2$) and low friction coefficient (0.13) under dry wear conditions. The effect of dispersity and ${\xi}$-potential of the nanoscale materials ($ZrO_2$ and $SiO_2$) used as electrolyte components for the plasma electrolytic oxidation on the composition and properties of the coatings was investigated. Improvement in the protective properties of the coatings with the incorporated nanoparticles was explained by the greater thickness of the protective layer, relatively low porosity, and the presence of narrow non-through pores. The impedance modulus measured at low frequency for the zirconia-containing layer (${\mid}Z{\mid}_{f=0.01Hz}=1.8{\times}10^6{\Omega}{\cdot}cm^2$) was more than one order of magnitude higher than that of the PEO-coating formed in the nanoparticles-free electrolyte (${\mid}Z{\mid}_{f=0.01Hz}=5.4{\times}10^4{\Omega}{\cdot}cm^2$).
Keywords
Protective coating; Plasma electrolytic oxidation; Nanoparticles;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 S. V. Gnedenkov and S. L. Sinebryukhov, Compos. Interface., 16, 387 (2009).   DOI
2 S. V. Gnedenkov, S. L. Sinebryukhov, A. V. Puz, A. S. Gnedenkov, I. E. Vyaliy, D. V. Mashtalyar, and V. S. Egorkin, Sol. St. Phen., 213, 149 (2014).   DOI
3 S. V. Gnedenkov, S. L. Sinebryukhov, V. S. Egorkin, D. V. Mashtalyar, I. E. Vyaliy, K. V. Nadaraia, I. M. Imshinetskiy, A. I. Nikitin, E. P. Subbotin, and A. S. Gnedenkov, J. Alloy. Compd., 808, 151629 (2019).   DOI
4 A. S. Gnedenkov, S. L. Sinebryukhov, D. V. Mashtalyar, I. E. Vyaliy, V. S. Egorkin, and S. V. Gnedenkov, Materials, 11, 2177 (2018).   DOI
5 A. S. Gnedenkov, S. L. Sinebryukhov, D. V. Mashtalyar, I. M. Imshinetskiy, I. E. Vyaliy, and S. V. Gnedenkov, Materials, 12, 2615 (2019).   DOI
6 S. L. Sinebryukhov, A. S. Gnedenkov, D. V. Mashtalyar, and S. V. Gnedenkov, Surf. Coat. Technol., 205, 1697 (2010).   DOI
7 D. V. Mashtalyar, S. V. Gnedenkov, S. L. Sinebryukhov, I. M. Imshinetskiy, A. S. Gnedenkov, and V. M. Bouznik, J. Alloy. Compd., 767, 353 (2018).   DOI
8 S. V. Gnedenkov, S. L. Sinebryukhov, D. V. Mashtalyar, V. M. Buznik, A. M. Emel'yanenko, and L. B. Boinovich, Prot. Met., 47, 93 (2011).
9 L. B. Boinovich, S. V. Gnedenkov, D. A. Alpysbaeva, V. S. Egorkin, A. M. Emelyanenko, S. L. Sinebryukhov and A. K. Zaretskay, Corros. Sci., 55, 238 (2012).   DOI
10 S. V. Gnedenkov, S. L. Sinebryukhov, D. V. Mashtalyar, V. S. Egorkin, M. V. Sidorova, and A. S. Gnedenkov, Corros. Sci., 85, 52 (2014).   DOI
11 I. M. Imshinetskiy, S. V. Gnedenkov, S. L. Sinebryukhov, D. V. Mashtalyar, A. V. Samokhin, and Y. V. Tsvetkov, Sol. St. Phen., 213, 125 (2014).   DOI
12 P. Zhang, X. Nie, H. Hua, and Y. Liu, Surf. Coat. Technol., 205, 1508 (2010) .   DOI
13 S. V. Gnedenkov, O. A. Khrisanfova, S. L. Sinebryukhov, A. V. Puz, and A. S. Gnedenkov, Mater. Manuf. Process., 23, 879 (2008).   DOI
14 S. L. Sinebryukhov, A. S. Gnedenkov, O. A. Khrisanfova, and S. V. Gnedenkov, Surf. Eng., 25, 565 (2009).   DOI
15 A. S. Gnedenkov, S. L. Sinebryukhov, D. V. Mashtalyar, and S. V. Gnedenkov, Surf. Coat. Technol., 225, 112 (2013).   DOI
16 A. L. Yerokhin, X. Nie, A. Leyland, A. Matthews, and S. J. Dowey, Surf. Coat. Technol., 122, 73 (1999).   DOI
17 J. Liang, L. Hu, and J. Hao, Appl. Surf. Sci., 253, 4490 (2007) .   DOI
18 F. Y. Jin, P. K. Chu, G. D. Xu, J. Zhao, D. L.Tang, and H. H. Tong, Mat. Sci. Eng A., 435-436, 123 (2006) .   DOI
19 S. L. Sinebryukhov, M. V. Sidorova, V. S. Egorkin, P. M. Nedozorov, A. Yu Ustinov, E. F. Volkova, and S. V. Gnedenkov, Prot. Met., 489, 678 (2012) .
20 S. V. Gnedenkov, O. A. Khrisanfova, A. G. Zavidnaya, S. L. Sinebryukhov, V. S. Egorkin, M. V. Nistratova, A. Yerokhin, and A. Matthews, Surf. Coat. Technol., 204, 2316 (2010) .   DOI
21 A. S. Gnedenkov, S. L. Sinebryukhov, D. V. Mashtalyar, I. E. Vyaliy, V. S. Egorkin, and S. V. Gnedenkov, Materials, 11, 2053 (2018).   DOI
22 A. S. Gnedenkov, S. L. Sinebryukhov, D. V. Mashtalyar, S. V. Gnedenkov, and V. I. Sergienko, Corros. Sci. Tech., 16, 151(2017).   DOI
23 A. S. Gnedenkov, S. L. Sinebryukhov, D. V. Mashtalyar, and S. V. Gnedenkov, Sol. St. Phen., 245, 89 (2016).   DOI
24 V. S. Egorkin, S. V. Gnedenkov, S. L. Sinebryukhov, I. E. Vyaliy, A. S. Gnedenkov, and R. G. Chizhikov, Surf. Coat. Technol., 334, 29 (2018).   DOI
25 A. S. Gnedenkov, S. L. Sinebryukhov, D. V. Mashtalyar, and S. V. Gnedenkov, Sol. St. Phen., 213, 143 (2014).   DOI