• Title/Summary/Keyword: Composite deck slab

Search Result 105, Processing Time 0.026 seconds

Behavior of multi-story steel buildings under dynamic column loss scenarios

  • Hoffman, Seth T.;Fahnestock, Larry A.
    • Steel and Composite Structures
    • /
    • v.11 no.2
    • /
    • pp.149-168
    • /
    • 2011
  • This paper presents a computational study of column loss scenarios for typical multi-story steel buildings with perimeter moment frames and composite steel-concrete floors. Two prototype buildings (three-story and ten-story) were represented using three-dimensional nonlinear finite element models and explicit dynamic analysis was used to simulate instantaneous loss of a first-story column. Twelve individual column loss scenarios were investigated in the three-story building and four in the ten-story building. This study provides insight into: three-dimensional load redistribution patterns; demands on the steel deck, concrete slab, connections and members; and the impact of framing configuration, building height and column loss location. In the dynamic simulations, demands were least severe for perimeter columns within a moment frame, but the structures also exhibited significant load redistribution for interior column loss scenarios that had no moment connectivity. Composite action was observed to be an important load redistribution mechanism following column loss and the concrete slab and steel deck were subjected to high localized stresses as a result of the composite action. In general, the steel buildings that were evaluated in this study demonstrated appreciable robustness.

Flexural Behavior of Continuous Composite Bridges with Precast Concrete Decks

  • Chung, Chul-Hun
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.4
    • /
    • pp.625-633
    • /
    • 2003
  • For the construction of open-topped steel box girder bridges, prefabricated concrete slab could offer several advantages over cast-in-situ deck including good quality control, fast construction, and elimination of the formwork for concrete slab casting. However, precast decks without reinforcements at transverse joints between precast slabs should be designed to prevent the initiation of cracking at the joints, because the performance of the joint is especially crucial for the integrity of a structural system. Several prestressing methods are available to introduce proper compression at the joints, such as internal tendons, external tendons and support lowering after shear connection. In this paper, experimental results from a continuous composite bridge model with precast decks are presented. Internal tendons and external tendons were used to prevent cracking at the joints. Judging from the tests, precast decks in negative moment regions have the whole contribution to the flexural stiffness of composite section under service loads if appropriate prestressing is introduced. The validity of the calculation of a cracking load fur serviceability was presented by comparing an observed cracking load and the calculated value. Flexural behavior of the continuous composite beam with external prestressing before and after cracking was discussed by using the deflection and strain data.

Flexural Capacity and CO2 Reduction Evaluation for Composite Beam with Weight Reducing Steel Wire-Integrated Void Deck Plate slab (자중저감 철선일체형 중공 데크플레이트 슬래브를 사용한 합성보의 휨내력 및 CO2 감소량 평가)

  • Kim, Sang-Seop;Park, Dong-Soo;Boo, Yoon-Seob
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.3
    • /
    • pp.313-323
    • /
    • 2012
  • The purpose of this study is to evaluate $CO_2$ reduction and the flexural performance of steel wire-integrated void deck plate slabs that were inserted in omega-shaped steel plates to reduce concrete and welded H-section beams. The void deck plate slab can secure the structure, not only reducing the weight of the building but it is also eco-friendly. Therefore, this study evaluated the flexural performance of the composite beam by conducting a monotonic loading test with the use of actuators. It quantitatively evaluated the $CO_2$ emission based on earlier studies. The main test parameters are the concrete thickness of upper slabs, and the interrupted width of the omega-shaped steel plate. The result of the test showed that the welded H-section beam applied steel wire-integrated void deck plate slabs that were inserted into the omega-shaped steel plate declined in flexural performance on the composite beam after reducing concrete volume. Likewise, it is effective in reducing $CO_2$.

Experimental Study on Flexural Behavior of CFT Girder-Deck Composite Section (콘크리트 충전 강관 거더-바닥판 합성단면의 휨거동에 관한 실험적 연구)

  • Chin, Won-Jong;Kang, Jae-Yoon;Choi, Eun-Suk;Lee, Jung-Woo;Lee, Heung-Soo;Kwark, Jong-Won
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.166-169
    • /
    • 2006
  • A new bridge system described in this paper uses concrete-filled steel tube (CFT) girders as a replacement for conventional girders. Experimental investigations were carried out to comprehend the flexural behavior of CFT girder-slab deck composite section. The experimental investigation consisted of designing and constructing a test specimen and loading it to collapse in bending to check the applicability of the system. The test results showed that concrete filled steel tube girders have good ductility and maintain its strength up to the end of the loading. In the test, the flexural behavior of each specimen of CFT girder-deck composite section is identified.

  • PDF

Loading capacity of simply supported composite slim beam with deep deck

  • Shi, Yongjiu;Yang, Lu;Wang, Yuanqing;Li, Qiuzhe
    • Steel and Composite Structures
    • /
    • v.9 no.4
    • /
    • pp.349-366
    • /
    • 2009
  • The composite slim beam has become popular throughout Europe in recent years and has also been used on some projects in China. With its steel section encased in a concrete slab, the steel-concrete composite slim beam can provide the floor construction with minimum depth and high fire resistance. However, the design method of the T-shape steel-concrete composite beam is no longer applicable to the composite slim beam with deep deck for its special construction, of which the present design models are not available but mainly depend on experiences. The elevation of the flexural stiffness and bending capacity of composite slim beams with deep deck is rather complicated, because the influences of many factors should be taken into account, such as the variable section dimensions, development of cracks and non-linear characteristics of concrete, etc. In this paper, experimental investigations have been conducted into the flexural behavior of two specimens of simply supported composite slim beam with deep deck. The emphases were laid on the bonding force on the interface between steel beam and concrete, the stress distribution of beam section, the flexural stiffness and bending capacity of the composite beams. Based on the experimental results, the reduction factor of equivalent stress distribution in concrete flange is suggested, and the calculation method of flexural stiffness and bending capacity of simply supported slim beams are proposed.

Estimation of Fatigue safety for PSC Bridge Decks (PSC 바닥판의 피로 안전성 평가)

  • 김영진;이정우;주봉철;김병석;박성용;이필구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.525-530
    • /
    • 2002
  • This study is peformed to propose the slab deck for the composite bridge with two girders. Considering the characteristics of the long span and the construction conditions in korea, a cast-in-place PSC deck was proposed for that bridge. To examine structural behaviors and safety of the proposed PSC deck, two real scale partitions of deck(12m$\times$3.2m) were tested under the fatigue loading. In the test, the failure mode and behaviors of each specimen, and the ultimate load carrying capacity of the two-girder-bridge deck were identified. Generally, the failure of concrete bridge deck is caused by the local punching shear stress resulting from the moving wheel load. Even though its ultimate flexural capacity is sufficiently larger than the demand, it could be failed by the punching shear fatigue. Therefore, the fatigue safety of the proposed PSC deck should be checked.

  • PDF

The Minimum Lap-spliced Length of the Reinforcement in the Steam Curing UHPC Bridge Deck Slab Joint (UHPC 바닥판 증기양생 현장이음부의 최소철근겹침이음길이)

  • Hwang, Hoon-Hee;Park, Sung-Yong
    • Composites Research
    • /
    • v.26 no.2
    • /
    • pp.135-140
    • /
    • 2013
  • The static test was performed to verify the effect of the joint in the UHPC bridge deck slab and the minimum lap-spliced length was presented. A total of six test members was fabricated to estimate the static behavior of the steam curing UHPC bridge deck slab joint by the four points bending test method. The lap-spliced joint type was expected to be not only simple but also efficient in UHPC structure because of the high bond stress of UHPC. Test results show that the decrease of maximum flexural strength was about 30% and the minimum lap-spliced length which behaved similar to the continued reinforcement in strength and ductility was 150 mm.

Construction sequence modelling of continuous steel-concrete composite bridge decks

  • Dezi, Luigino;Gara, Fabrizio;Leoni, Graziano
    • Steel and Composite Structures
    • /
    • v.6 no.2
    • /
    • pp.123-138
    • /
    • 2006
  • This paper proposes a model for the analysis of the construction sequences of steel-concrete composite decks in which the slab is cast-in-situ for segments. The model accounts for early age shrinkage, such as thermal and endogenous shrinkage, drying shrinkage, tensile creep effects and the complex sequences of loading due to pouring of the different slab segments. The evolution of the structure is caught by suitably defining the constitutive relationships of the concrete and the steel reinforcements. The numerical solution is obtained by means of a step-by-step procedure and the finite element method. The proposed model is then applied to a composite deck in order to show its potential.

Flexural Behavior of Bridge Deck Concrete Reinforced with FRP Box and Plate (FRP Box와 판으로 보강된 교량 바닥판 콘크리트의 휨거동)

  • Nam J. H.;Jeong S. K.;Yoon S. J.;Kim B. S.;Cho K. H.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.13-17
    • /
    • 2004
  • In recent years, the deterioration of reinforced concrete structures has become a serious problem in civil engineering fields. This situation is mainly due to corrosion of steel reinforcing bars embedded in concrete. Recently, there has been a greatly increased demand for the use of FRP (fiber reinforced plastic) in civil engineering field due to their superior mechanical and physical properties. This paper presents an experimental study on the behavior of concrete bridge deck reinforced with FRP Box, FRP Plate, and FRP Re-bar. In tlIe study, mechanical properties of FRP Box, FRP Plate, GFRP Re-bar, and CFRP Grid have been investigated. Full scale one-way deck slab was tested under four point lateral load (equivalent to actual wheel load of DB-24 including impact). Load-deflection and load-strain data were collected through LVDT's and strain gages attached to the specimen.

  • PDF

Experimental investigation of shear connector behaviour in composite beams with metal decking

  • Qureshi, Jawed;Lam, Dennis
    • Steel and Composite Structures
    • /
    • v.35 no.4
    • /
    • pp.475-494
    • /
    • 2020
  • Presented are experimental results from 24 full-scale push test specimens to study the behaviour of composite beams with trapezoidal profiled sheeting laid transverse to the beam axis. The tests use a single-sided horizontal push test setup and are divided into two series. First series contained shear loading only and the second had normal load besides shear load. Four parameters are studied: the effect of wire mesh position and number of its layers, placing a reinforcing bar at the bottom flange of the deck, normal load and its position, and shear stud layout. The results indicate that positioning mesh on top of the deck flange or 30 mm from top of the concrete slab does not affect the stud's strength and ductility. Thus, existing industry practice of locating the mesh at a nominal cover from top of the concrete slab and Eurocode 4 requirement of placing mesh 30 mm below the stud's head are both acceptable. Double mesh layer resulted in 17% increase in stud strength for push tests with single stud per rib. Placing a T16 bar at the bottom of the deck rib did not affect shear stud behaviour. The normal load resulted in 40% and 23% increase in stud strength for single and double studs per rib. Use of studs only in the middle three ribs out of five increased the strength by 23% compared to the layout with studs in first four ribs. Eurocode 4 and Johnson and Yuan equations predicted well the stud strength for single stud/rib tests without normal load, with estimations within 10% of the characteristic experimental load. These equations highly under-estimated the stud capacity, by about 40-50%, for tests with normal load. AISC 360-16 generally over-estimated the stud capacity, except for single stud/rib push tests with normal load. Nellinger equations precisely predicted the stud resistance for push tests with normal load, with ratio of experimental over predicted load as 0.99 and coefficient of variation of about 8%. But, Nellinger method over-estimated the stud capacity by about 20% in push tests with single studs without normal load.