DOI QR코드

DOI QR Code

Construction sequence modelling of continuous steel-concrete composite bridge decks

  • Dezi, Luigino (Dept. of Architecture, Construction and Structures, Marche Polytechnic University) ;
  • Gara, Fabrizio (Dept. of Architecture, Construction and Structures, Marche Polytechnic University) ;
  • Leoni, Graziano (PROCAM, University of Camerino)
  • Received : 2005.02.03
  • Accepted : 2005.10.19
  • Published : 2006.04.25

Abstract

This paper proposes a model for the analysis of the construction sequences of steel-concrete composite decks in which the slab is cast-in-situ for segments. The model accounts for early age shrinkage, such as thermal and endogenous shrinkage, drying shrinkage, tensile creep effects and the complex sequences of loading due to pouring of the different slab segments. The evolution of the structure is caught by suitably defining the constitutive relationships of the concrete and the steel reinforcements. The numerical solution is obtained by means of a step-by-step procedure and the finite element method. The proposed model is then applied to a composite deck in order to show its potential.

Keywords

References

  1. CEB-FIP Model Code 1990 (1988), 'CEB Bulletin d'lnformation n. 190', CEB-FIP Comite Euro-International du Beton - Federation International de la Precontrainte, Paris, France
  2. Dezi, L. and Tarantino, A. M. (1993), 'Creep in composite continuous beams. I: Theoretical treatment', J. Struct. Engrg. ASCE, 119(7), 2095-2111 https://doi.org/10.1061/(ASCE)0733-9445(1993)119:7(2095)
  3. Dezi, L. Leoni, G and Tarantino, A. M. (1995), 'Time-dependent analysis of prestressed composite beams', J. Struct. Engrg. ASCE, 121(4), 621-633
  4. Dezi, L., Gara, F., Leoni, G and Vitali, A. (2003), 'Slab cracking control in composite decks by means of fractionated castings', Proc. of ASSCCA '03, Sydney, Australia, 1029-1034
  5. Dezi, L. and Niccolini, S. (2003), 'Les Viaducs de la Bretelle d'Urbino Italie', Bulletin 22 Ponts Metalliques, OTUA, 170-186
  6. Ducret, J. M. and Lebet, J. P. (1999), 'Behaviour of composite bridges during construction', Structural Engineering International, 3, 212-218
  7. Krauss, P. D. and Rogalla, E. A. (1996), Transverse Cracking in Newly Constructed Bridge Decks, National Academy Press, Washington, USA
  8. Kwak, H. G., Seo, Y. J. and lung, C. M. (2000), 'Effects of the slab casting sequences and the drying shrinkage of concrete slabs on the short-term and long-term behaviour of composite steel box girder bridges', Eng. Struct., 23, 1453-1480
  9. Marl, A. R. (2000) 'Numerical simulation of the segmental construction of three dimensional concrete frames', Eng. Struct., 22, 585-596 https://doi.org/10.1016/S0141-0296(99)00009-7
  10. Mari, A. R., Mirambell, E. and Estrada, I. (2003) 'Effects of construction process and slab prestressing on the serviceability behaviour of composite bridges', J. Construct. Steel Res., 59, 135-163 https://doi.org/10.1016/S0143-974X(02)00029-9
  11. Newmark, N. M., Siess, C. P. and Vi est, I. M. (1951), 'Tests and analysis of composites beams with incomplete interaction', Proc. Soc. Exp. Stress Anal., 9(1), 75-92
  12. SETRA (1995), Recommandations pour maitriser la flssuration des dalles, SETRA, Bagneux, France

Cited by

  1. Time-Dependent Analysis of Long-Span, Concrete-Filled Steel Tubular Arch Bridges vol.19, pp.4, 2014, https://doi.org/10.1061/(ASCE)BE.1943-5592.0000549
  2. Simulating the construction process of steel-concrete composite bridges vol.18, pp.5, 2015, https://doi.org/10.12989/scs.2015.18.5.1239
  3. Coupled Effects of Concrete Shrinkage, Creep, and Cracking on the Performance of Postconnected Prestressed Steel-Concrete Composite Girders vol.23, pp.3, 2018, https://doi.org/10.1061/(ASCE)BE.1943-5592.0001192
  4. State of the art on the time-dependent behaviour of composite steel–concrete structures vol.80, 2013, https://doi.org/10.1016/j.jcsr.2012.08.005
  5. Slab Cracking Control in Continuous Steel-Concrete Bridge Decks vol.18, pp.12, 2013, https://doi.org/10.1061/(ASCE)BE.1943-5592.0000459
  6. A beam finite element including shear lag effect for the time-dependent analysis of steel–concrete composite decks vol.31, pp.8, 2009, https://doi.org/10.1016/j.engstruct.2009.03.017
  7. Fatigue Assessment of Continuous Composite Bridges Accounting for Slab Casting Sequences pp.1683-0350, 2018, https://doi.org/10.1080/10168664.2018.1453768
  8. Viscoelastic behaviour of non-homogeneous variable-section beams with post-poned restraints vol.9, pp.5, 2006, https://doi.org/10.12989/cac.2012.9.5.357
  9. Development and Evaluation of New Connection Systems for Hybrid Truss Bridges vol.11, pp.2, 2006, https://doi.org/10.3151/jact.11.61
  10. Long-Term Behaviour of Precast Concrete Deck Using Longitudinal Prestressed Tendons in Composite I-Girder Bridges vol.8, pp.12, 2006, https://doi.org/10.3390/app8122598
  11. Time-dependent analysis of slender, tapered reinforced concrete columns vol.36, pp.2, 2006, https://doi.org/10.12989/scs.2020.36.2.229
  12. Experimental and analytical study on continuous GFRP-concrete decks with steel bars vol.76, pp.6, 2006, https://doi.org/10.12989/sem.2020.76.6.737
  13. Finite Elements for Higher Order Steel-Concrete Composite Beams vol.11, pp.2, 2021, https://doi.org/10.3390/app11020568