• 제목/요약/키워드: Composite cylinder

검색결과 201건 처리시간 0.022초

Research on residual stress in SiCf reinforced titanium matrix composites

  • Qu, Haitao;Hou, Hongliang;Zhao, Bing;Lin, Song
    • Steel and Composite Structures
    • /
    • 제17권2호
    • /
    • pp.173-184
    • /
    • 2014
  • This study aimed to theoretical calculate the thermal residual stress in continuous SiC fiber reinforced titanium matrix composites. The analytical solution of residual stress field distribution was obtained by using coaxial cylinder model, and the numerical solution was obtained by using finite element model (FEM). Both of the above models were compared and the thermal residual stress was analyzed in the axial, hoop, radial direction. The results indicated that both the two models were feasible to theoretical calculate the thermal residual stress in continuous SiC fiber reinforced titanium matrix composites, because the deviations between the theoretical calculation results and the test results were less than 8%. In the titanium matrix composites, along with the increment of the SiC fiber volume fraction, the longitudinal property was improved, while the equivalent residual stress was not significantly changed, keeping the intensity around 600 MPa. There was a pronounced reduction of the radial residual stress in the titanium matrix composites when there was carbon coating on the surface of the SiC fiber, because carbon coating could effectively reduce the coefficient of thermal expansion mismatch between the fiber and the titanium matrix, meanwhile, the consumption of carbon coating could protect SiC fibers effectively, so as to ensure the high-performance of the composites. The support of design and optimization of composites was provided though theoretical calculation and analysis of residual stress.

구체방수 콘크리트의 균열 자가치유 성능 (Self-Healing Performance of Concrete Using Admixture)

  • 이종윤;이한주;이용진
    • 한국안전학회지
    • /
    • 제27권6호
    • /
    • pp.109-114
    • /
    • 2012
  • This study is the things to experiment and evaluate the performance of self-healing water-proofing on the concrete to be using the crystal growth composite waterproofing admixture. The cylinder to be making on the concrete by ${\varnothing}150{\times}300$ mm for evaluating the performance of self-healing water-proofing was aging 90 days and cut on a 50 mm. So, it prompted the crack and applied. After it measured the quantity of water to be flow the water throughout the crack part of the cylinder, it applied the basic formular of Darcy's law and calculated the coefficient of water permeability. So, it verified the performance of self-healing water-proofing on the basis of the changing shape of the water permeability. This experiment is the thing to be applied the general evaluation of the structure to demand the real watertightness on doing for the evaluating of performance of the quantity of water leak and self-healing water-proofing about the various penetration crack.

충격압축하중을 받는 횡등방성 중실축의 과도 동적해석 (Transient Dynamic Stress Analysis of Transversely Isotropic Cylinders Subject to Longitudinal Impact)

  • 오근;심우진
    • 한국전산구조공학회논문집
    • /
    • 제20권5호
    • /
    • pp.521-532
    • /
    • 2007
  • 원형축이 축방향으로 충격하중을 받으면 외경에서 반사된 파가 축의 중앙으로 집중되어 순간적으로 큰 응력이 발생하게 된다. 본 연구에서는 여러 가지 충격 축하중을 받는 횡등방성 반-무한 원형축을 대상으로 중실축 내의 종방향 응력전파를 축대칭 유한요소법과 Houtolt 시간적분법을 이용하여 프로그램을 작성하고 수치적으로 해석하여 그 결과를 횡등방성 재료의 재료구성비에 따라 자세히 설명한다. 제시된 해법의 타당성은 본 논문 수치 결과와 기 해석된 다른 해법에 의한 수치결과의 비교를 통해 검증된다. 여러 종류의 충격하중들에 따른 파동의 결과를 2차원, 3차원적으로 제시하여 축응력 전파를 이해하는데 기본 자료가 되도록 하였다. 또한 유한요소법을 이용하여 수치해석을 함에 있어 정확한 수치결과를 얻기 위한 무차원 동특성 시간변수에 대해 기술하였다.

복합재 용기의 손상에 따른 ACM기법 적용 연구 (A Study on the Applications of the ACM(Area Capacity Method) for the Carbon-Fiber Composit Cylinder according to the Flaw Depth)

  • 장갑만;임상식;김영규;김정환
    • 한국가스학회지
    • /
    • 제23권5호
    • /
    • pp.1-7
    • /
    • 2019
  • 호흡용 용기에 흠 등의 결함이 발생하였을 때 용기의 잔존강도를 파악하여 파열압력을 판단해야하지만, 복합재료 용기의 경우 흠에 따른 파열 강도의 예측이 어려우며 기법이 복잡하다. 따라서 본 연구에서는 Type-I 용기의 면적용량법 적용 결과를 토대로 Type-III 용기에 결함발생시 파열을 예측하기 위해 면적 용량법 모델을 개발하였으며, 그 신뢰성을 확인하기 위해 용기의 외면에 흠을 가공하여 파열시험을 실시하였다. 면적 용량법 모델의 예측 결과와 실험의 경향이 매우 일치하는 경향을 보였으며, 향후 복합재 용기의 파열압력 추정 방법에 있어 중요한 자료가 될 것으로 기대한다.

COMPARATIVE STUDY ON THE FRACTURE STRENGTH OF METAL-CERAMIC VERSUS COMPOSITE RESIN-VENEERED METAL CROWNS IN CEMENT-RETAINED IMPLANT-SUPPORTED CROWNS UNDER VERTICAL COMPRESSIVE LOAD

  • Pae, Ahran;Jeon, Kyung-A;Kim, Myung-Rae;Kim, Sung-Hun
    • 대한치과보철학회지
    • /
    • 제45권3호
    • /
    • pp.295-302
    • /
    • 2007
  • Statement of problem. Fracture of the tooth-colored superstructure material is one of the main prosthetic complications in implant-supported prostheses. Purpose. The purpose of this in vitro study was to compare the fracture strength between the cement-retained implant-supported metal-ceramic crowns and the indirect composite resinveneered metal crowns under the vertical compressive load. Material and methods. Standard implants of external type (AVANA IFR 415 Pre-mount; Osstem Co., Busan, Korea) were embedded in stainless steel blocks perpendicular to their long axis. Customized abutments were fabricated using plastic UCLA abutments (Esthetic plastic cylinder; Osstem Co., Busan, Korea). Thirty standardized copings were cast with non-precious metal (Rexillium III, Pentron, Walling ford, Conn., USA). Copings were divided into two groups of 15 specimens each (n = 15). For Group I specimens, metal-ceramic crowns were fabricated. For Group II specimens, composite resin-veneered (Sinfony, 3M-ESPE, St. Paul, MN, USA) metal crowns (Sinfony-veneered crowns) were fabricated according to manufacturer's instructions. All crowns were temporary cemented and vertically loaded with an Instron universal testing machine (Instron 3366, Instron Corp., Norwood, MA, USA). The maximum load value (N) at the moment of complete failure was recorded and all data were statistically analyzed by independent sample t-test at the significance level of 0.05. The modes of failure were also investigated with visual analysis. Results. The fracture strength of Sinfony-veneered crowns ($2292.7{\pm}576.0N$) was significantly greater than that of metal-ceramic crowns ($1150.6{\pm}268.2N$) (P < 0.05). With regard to the failure mode, Sinfony-veneered crowns exhibited adhesive failure, while metal-ceramic crowns tended to fracture in a manner that resulted in combined failure. Conclusion. Sinfony-veneered crowns demonstrated a significantly higher fracture strength than that of metal-ceramic crowns in cement-retained implant-supported prostheses.

Thermoelastic dynamic analysis of wavy carbon nanotube reinforced cylinders under thermal loads

  • Moradi-Dastjerdi, Rasool;Payganeh, Gholamhassan
    • Steel and Composite Structures
    • /
    • 제25권3호
    • /
    • pp.315-326
    • /
    • 2017
  • In this work, thermoelastic dynamic behavior of functionally graded carbon nanotube reinforced composite (FG-CNTRC) cylinders subjected to mechanical pressure loads, uniform temperature environment or thermal gradient loads is investigated by a mesh-free method. The material properties and thermal stress wave propagation of the nanocomposite cylinders are derived after solving of the transient thermal equation and obtaining of the time history of temperature field of the cylinders. The nanocomposite cylinders are made of a polymer matrix and wavy single-walled carbon nanotubes (SWCNTs). The volume fraction of carbon nanotubes (CNTs) are assumed variable along the radial direction of the axisymmetric cylinder. Also, material properties of the polymer and CNT are assumed temperature-dependent and mechanical properties of the nanocomposite are estimated by a micro mechanical model in volume fraction form. In the mesh-free analysis, moving least squares shape functions are used to approximate temperature and displacement fields in the weak form of motion equation and transient thermal equation, respectively. Also, transformation method is used to impose their essential boundary conditions. Effects of waviness, volume fraction and distribution pattern of CNT, temperature of environment and direction of thermal gradient loads are investigated on the thermoelastic dynamic behavior of FG-CNTRC cylinders.

전기활성 고분자 구동 손가락 외골격 장치의 잡기 성능에 관한 연구 (Study on Grasping Performance of Finger Exoskeleton Actuated by Electroactive Polymers)

  • 김민혁;이수진;조재영;김동민;이계한
    • 한국정밀공학회지
    • /
    • 제32권10호
    • /
    • pp.873-878
    • /
    • 2015
  • A finger exoskeleton actuated by ionic polymer metal composite (IPMC) actuators has been developed. In order to evaluate performance of cylindrical grasping of finger exoskeletons, they were equipped with a hand dummy, which is composed of four fingers. The finger dummy has three joints that can be actuated by bending the IPMC actuators. A four finger grasping motion was analyzed using cameras, and cylindrical grasping motion was accomplished within two minutes after applying a 4 volt direct voltage to the IPMC actuators. A pull out test was also performed to evaluate the cylindrical grasping force of the finger exoskeletons actuated by the IPMC actuators. Each finger generated about 2 N of holding force when grasping the cylinder which had a diameter of 50 mm.

인공 고관절 골두용 세라믹 복합재료에 대한 세라믹-세라믹 접촉 마멸 특성 분석 (Ceramic-Ceramic Wear Zirconia/Alumina Composites For The Application Of Total Hip Joint Implant)

  • 김환;이권용;김대준;이명현;서원선
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2004년도 학술대회지
    • /
    • pp.355-361
    • /
    • 2004
  • Ceramic femoral heads in the total hip replacement have been developed to reduce the polyethylene liner wear, Alumina and zirconia (3Y-TZP) having the excellent tribological properties are coupled against acetabular cups of polyethylene and are used in clinical application worldwide. However, alumina has a risk of catastrophic failure, and zirconia has the low temperature degradation in spite of enhanced fracture toughness. Recently, novel zirconia/alumina composite is very attractive due to the low temperature degradation (LTD)-free character and high fracture toughness. In the present study, we focus on the wear of ceramic on ceramic, which are able to be used as femoral heads and acetabular cups. Therefore, LTD-free zirconia/alumina composites with three compositions are made in a form of disk and cylinder, and the wear of the composites is performed on pin-on-disk type wear tester. The wear is conducted with or without lubricant. All the composites fabricated with the different composition show the good wear resistance.

  • PDF

Multi-objective durability and layout design of fabric braided braking hose in cyclic motion

  • Cho, J.R.;Kim, Y.H.
    • Steel and Composite Structures
    • /
    • 제25권4호
    • /
    • pp.403-413
    • /
    • 2017
  • The fabric braided braking hose that delivers the driver's braking force to brake cylinder undergoes the large deformation cyclic motion according to the steering and bump/rebound motions of vehicle. The cyclic large deformation of braking hose may give rise to two critical problems: the interference with other adjacent vehicle parts and the micro cracking stemming from the fatigue damage accumulation. Hence, both the hose deformation and the fatigue damage become the critical issue in the design of braking hose. In this context, this paper introduces a multi-objective optimization method for minimizing the both quantities. The total length of hose and the helix angles of fabric braided composite layers are chosen for the design variables, and the maximum hose deformation and the critical fatigue life cycle are defined by the individual single objective functions. The trade-off between two single objective functions is made by introducing the weighting factors. The proposed optimization method is validated and the improvement of initial hose design is examined through the benchmark simulation. Furthermore, the dependence of optimum solutions on the weighting factors is also investigated.

시판 복합레진의 물성에 관한 실험적 연구 (AN EXPERIMENTAL STUDY ON SOME PHYSICAL CHARACTERISTICS OF COMPOSITE RESINS - A study of the hardness, water sorption and solubility)

  • 박상덕;박동수;이찬영;이정석
    • Restorative Dentistry and Endodontics
    • /
    • 제10권1호
    • /
    • pp.17-30
    • /
    • 1984
  • This study was done to evaluate the hardness, water sorption and solubility values of twelve well known composite resins, and to compare each other. For the hardness test, the specimens were made in cylinder form with 4mm in diameter and 2mm in thickness as a modification of the American Society for Testing and New Materials, 1966, and for water sorption and solubility tests, the specimens were prepared in same shape of 20mm in diameter and 0.5mm in thickness as a modification of the ADA Specification No. 12. The results were obtained as follow: 1. The hardness range were from 17.9 to 87.5 respectively. As time passed by, the noticable change was evident in early 12 hours. 2. Of the water sorption. the range was from 0.38 to 0.93. The significant change was appeared within 12 hours and on 3 day by 1 week except four brands. 3. Of the water solubility, the range was 0.06 to 0.16. The highest value was found within early 24 hours. 4. Generally, four brands could be chosen as preferable products of hardness. water sorption and solubility tests according to the ADA Specification No. 12.

  • PDF