• Title/Summary/Keyword: Complex systems

Search Result 4,741, Processing Time 0.04 seconds

Algorithms of the Parametric Adaptation of Models of Complex Systems by Discrete Observations

  • Radjabov, Bakhtiyor;Khidirova, Charos
    • Journal of Multimedia Information System
    • /
    • v.4 no.4
    • /
    • pp.317-320
    • /
    • 2017
  • This paper examines approaches to the development of algorithms of parametric identification of models of complex systems from discrete observations. A modification of a known algorithm Kaczmarz which is designed for closed systems with perturbations, based on the methods of random search and investigates their statistical properties.

Zeros and Step Response Characteristics in LTI SISO Systems with Complex Poles (복소극점을 갖는 선형시불변 단일입출력 시스템의 영점과 계단응답 특성)

  • Lee, Sang-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.4
    • /
    • pp.313-318
    • /
    • 2010
  • This paper deals with the relationship between zeros and step response of the second and third order LTI (Linear Time Invariant) SISO (Single-Input and Single-Output) systems with complex poles. Although it has been known that the maximum number of local extrema is less than the number of zeros in the system with only real poles[8], some cases with complex poles are shown in this paper to have many local extrema. This paper proposes monotone nondecreasing conditions and describes the relationship between the transient response and the number of local extrema in step response with each region of zeros.

Evolution of Cooperative Behavior in Distributed Social Dilemma

  • Yamashita, Tomohisa;Suzuki, Keiji;Yamamoto, Masahito;Ohuchi, Azuma
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.97-100
    • /
    • 2000
  • In previous research of social dilemma, there is no extended game that the players can select one game out of some social dilemma games. We propose this kind of game as "Distributed Social Dilemma" In this game, each player tries to acquire the adaptive strategy throughout local interactions. We make use of GA as evolutionary operations. In this paper, our purpose is to examine how the game selection of players influences the evolution of cooperation in distributed social dilemma. In order to examine, we formulate distributed social dilemma by Game Theory and use agent-based simulation that each agent is regard as player

  • PDF

Cooperative Task Processing by Separating and Fusing Multi-Mobile-agents

  • Tsuchida, Yasuhiro;Yamamoto, Masahito;Kawamura, Hidenori;Ohuchi, Azuma
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.965-968
    • /
    • 2000
  • We develop the Multi-Mobile-agents system for realizing effective cooperative task processing in the network environment. In this system, agents are separated / fused by the Place and migrated to another computer. A Place can assign agents to other places by agents migration to be flat the time to execute agents’ action. In this paper, the effectiveness of this system is shown by experimental results applying an agent given simple task.

  • PDF

On the Fuzzy Approach to Integrated Evaluation of Complex Systems (퍼지 평가의 통합특성에 관하여)

  • 이철영;임봉택
    • Journal of Korean Port Research
    • /
    • v.13 no.1
    • /
    • pp.79-86
    • /
    • 1999
  • This paper deals with the evaluation problem of complex systems by introducing a fuzzy approach. The authors are functionally supposing a hierarchical structure model of a complex system and give light on the following problems. First for the purpose of clarifying the characteristics of measures the property and differences between two method such as linear and fuzzy viewpoint are discussed through two level-down evaluation process. Second the integrated evaluation process which keeps reversibility between hierarchical levels is discussed and obtained some necessary conditions for reversibility of fuzzy evaluation. From these results it is expected that the fuzzy approach overcomes partly the limitation of reductionism at the hierarchical evaluation of complex systems.

  • PDF

Dynamics and GA-Based Stable Control for a Class of Underactuated Mechanical Systems

  • Liu, Diantong;Guo, Weiping;Yi, Jianqiang
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.1
    • /
    • pp.35-43
    • /
    • 2008
  • The control of underactuated mechanical system is very complex for the loss of its control inputs. The model of underactuated mechanical systems in a potential field is built with Lagrangian method and its structural properties are analyzed in detail. A genetic algorithm (GA)based stable control approach is proposed for the class of under actuated mechanical systems. The Lyapunov stability theory and system properties are utilized to guarantee the system stability to its equilibrium. The real-valued GA is used to adjust the controller parameters to improve the system performance. This approach is applied to the underactuated double-pendulum-type overhead crane and the simulation results illustrate the complex system dynamics and the validity of the proposed control algorithm.

Evaluation of Odor Dispersion from Livestock Building through Field Experiment (현장실험을 통한 축산시설로부터 배출되는 축산악취의 확산 평가)

  • Yeo, Uk-Hyeon;Lee, In-Bok;Ha, Tae-Hwan;Decano, Cristina;Kim, Rack-Woo;Lee, Sang-Yeon;Kim, Jun-Gyu;Choi, Young-Bae;Park, You-Me
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.6
    • /
    • pp.21-30
    • /
    • 2019
  • Livestock odor is comprised of mixed type of odorous compounds. Among these, ammonia ($NH_3$) and hydrogen sulfide ($H_2S$) are the two known major odor causing substances. Because high odor concentration reduces productivity of livestock and causes damage to the surrounding communities, quantitative analysis is needed to manage the odor inside and outside the livestock facilities. It is also necessary to evaluate odor dispersion according to the distance between the receptors taking into account the influence of odor source and weather condition. Therefore, in this study, we tried to evaluate the internal environment and odor dispersion from experimental pig house considering weather conditions. An experimental farm was specifically selected to eliminate the interference of odors generated by adjacent farms. $NH_3$ and complex odor were quantitatively analyzed using a gas detector and air dilution sensory method. The concentration of $NH_3$ and complex odor in pig house showed a distinct concentration difference according to the cleaning and ventilation conditions. $NH_3$ concentration and complex odor was lower than emission standard in the pig house and at the site boundary. The average $NH_3$ concentration (P1~P3) and the $NH_3$ concentration at the site boundary (S1) were strongly correlated with R=0.77. While the correlation for complex odor inside and at the site boundary had R=0.52. The correlation coefficient between $NH_3$ and the complex odor was 0.80.

Influence of Time to Walk Back and Comparing for the Self-balancing Production Line

  • Hirotani, Daisuke;Myreshka, Myreshka;Morikawa, Katsumi;Takahashi, Katsuhiko
    • Industrial Engineering and Management Systems
    • /
    • v.4 no.1
    • /
    • pp.36-46
    • /
    • 2005
  • In traditional production lines, such as assembly lines, each worker is usually assigned to a fixed task, which is beneficial since it reduces the amount of training needed for workers to master their assigned tasks. However, when workers complete their tasks at different speeds, the slowest worker will determine the overall pace of the production line and limit production. To avoid this problem, the self-balancing production line was introduced. In this type of production line, each worker works dynamically, thus they can maintain balanced production. Previous research analyzing the performance of these lines has ignored the walk-back time associated with dynamic workers. U-shaped production lines have also been analyzed and policies for such lines have been proposed. However, the walk-back time cannot be ignored in practice, and research taking this factor into account is needed to enable balanced production and thus the maximum production rate. In this paper, we propose production policies for a production line with the walk-back time taken into account, and define and analyze the conditions for self-balancing. Furthermore, we have compared the performance of such a line with that of other production lines under the same conditions, and the results show the superiority of this line in certain cases.

Optimal Preventive Maintenance Period in Complex Systems in Considering Components Reliability Characteristic (하부 구성품의 신뢰도 특성을 고려한 복합 시스템의 최적 예방정비 주기 산출)

  • Lee, Youn-Ho;Lee, Ik-Do;Lee, Dong-Woo;Sohn, Ki-Hong
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.37 no.4
    • /
    • pp.390-399
    • /
    • 2011
  • Generally the life-cycle cost of complex systems composed of several sub systems or equipments such as train, aircraft weapon systems is spent much more during operation and maintenance phase than development phase. The maintenance cost for maintaining the availability and extending the life span of systems comprise a large proportion of systems operation cost. The cycle of preventive maintenance affects operation and maintenance cost a lot. In this study we introduce a way minimizing life-cycle cost of systems by calculating more reliable preventive maintenance period than the results of previous study using systems reliability data considered the reliability and failure effect ratio of sub-systems or components. We can solve the preventive maintenance period problem known as NP-Hard as quick as possible by using modified genetic algorithm than using other models introduced in previous study.

Research Trends of Cognitive Systems Engineering Approaches to Human Error and Accident Modelling in Complex Systems (복잡한 시스템에서의 인적오류 및 사고모형의 인지시스템공학적 연구의 동향)

  • Ham, Dong-Han
    • Journal of the Ergonomics Society of Korea
    • /
    • v.30 no.1
    • /
    • pp.41-53
    • /
    • 2011
  • Objective: The purpose of this paper is to introduce new research trends of human error and accident modeling and to suggest future promising research directions in those areas. Background: Various methods and techniques have been developed to understand the nature of human errors, to classify them, to analyze their causes, to prevent their negative effects, and to use their concepts during design process. However, it has been reported that they are impractical and ineffective for modern complex systems, and new research approaches are needed to secure the safety of those systems. Method: Six different perspectives to study human error and system safety are explained, and then seven recent research trends are introduced in relation to the six perspectives. The implications of the new research trends and viable research directions based on them are discussed from a cognitive systems engineering point of view. Results: Traditional methods for analyzing human errors and identifying causes of accidents have critical limitations in complex systems, and recent research trends seem to provide some insights and clues for overcoming them. Conclusion: Recent research trends of human error and accident modeling emphasize different concepts and viewpoints, which include systems thinking, sociotechnical perspective, ecological modelling, system resilience, and safety culture. Application: The research topics explained in this paper will help researchers to establish future research programmes.