• Title/Summary/Keyword: Complex algorithm

Search Result 2,614, Processing Time 0.026 seconds

Simulation Study of Discrete Event Systems using Fast Approximation Method of Single Run and Optimization Method of Multiple Run (단일 실행의 빠른 근사해 기법과 반복 실행의 최적화 기법을 이용한 이산형 시스템의 시뮬레이션 연구)

  • Park, Kyoung Jong;Lee, Young Hae
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.32 no.1
    • /
    • pp.9-17
    • /
    • 2006
  • This paper deals with a discrete simulation optimization method for designing a complex probabilistic discrete event simulation. The developed algorithm uses the configuration algorithm that can change decision variables and the stopping algorithm that can end simulation in order to satisfy the given objective value during single run. It tries to estimate an auto-regressive model for evaluating correctly the objective function obtained by a small amount of output data. We apply the proposed algorithm to M/M/s model, (s, S) inventory model, and known-function problem. The proposed algorithm can't always guarantee the optimal solution but the method gives an approximate feasible solution in a relatively short time period. We, therefore, show the proposed algorithm can be used as an initial feasible solution of existing optimization methods that need multiple simulation run to search an optimal solution.

Base Station Location Optimization in Mobile Communication System (이동 통신 시스템에서 기지국 위치의 최적화)

  • 변건식;이성신;장은영;오정근
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.5
    • /
    • pp.499-505
    • /
    • 2003
  • In the design of mobile wireless communication system, base station location is one of the most important parameters. Designing base station location, the cost must be minimized by combining various, complex parameters. We can solve this problem by combining optimization algorithm, such as Simulated Annealing, Tabu Search, Genetic Algorithm, Random Walk Algorithm that have been used extensively fur global optimization. This paper shows the 4 kinds of algorithm to be applied to the optimization of base station location for communication system and then compares, analyzes the results and shows optimization process of algorithm.

Data Clustering Method Using a Modified Gaussian Kernel Metric and Kernel PCA

  • Lee, Hansung;Yoo, Jang-Hee;Park, Daihee
    • ETRI Journal
    • /
    • v.36 no.3
    • /
    • pp.333-342
    • /
    • 2014
  • Most hyper-ellipsoidal clustering (HEC) approaches use the Mahalanobis distance as a distance metric. It has been proven that HEC, under this condition, cannot be realized since the cost function of partitional clustering is a constant. We demonstrate that HEC with a modified Gaussian kernel metric can be interpreted as a problem of finding condensed ellipsoidal clusters (with respect to the volumes and densities of the clusters) and propose a practical HEC algorithm that is able to efficiently handle clusters that are ellipsoidal in shape and that are of different size and density. We then try to refine the HEC algorithm by utilizing ellipsoids defined on the kernel feature space to deal with more complex-shaped clusters. The proposed methods lead to a significant improvement in the clustering results over K-means algorithm, fuzzy C-means algorithm, GMM-EM algorithm, and HEC algorithm based on minimum-volume ellipsoids using Mahalanobis distance.

Hybrid Genetic Algorithm Reinforced by Fuzzy Logic Controller (퍼지로직제어에 의해 강화된 혼합유전 알고리듬)

  • Yun, Young-Su
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.28 no.1
    • /
    • pp.76-86
    • /
    • 2002
  • In this paper, we suggest a hybrid genetic algorithm reinforced by a fuzzy logic controller (flc-HGA) to overcome weaknesses of conventional genetic algorithms: the problem of parameter fine-tuning, the lack of local search ability, and the convergence speed in searching process. In the proposed flc-HGA, a fuzzy logic controller is used to adaptively regulate the fine-tuning structure of genetic algorithm (GA) parameters and a local search technique is applied to find a better solution in GA loop. In numerical examples, we apply the proposed algorithm to a simple test problem and two complex combinatorial optimization problems. Experiment results show that the proposed algorithm outperforms conventional GAs and heuristics.

Pose Estimation of a Cylindrical Object Using Genetic Algorithm (유전자 알고리즘을 이용한 원기둥형 물체의 자세 추정 방법)

  • Jeong Kyuwon
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.3
    • /
    • pp.54-59
    • /
    • 2005
  • The cylindrical object are widely used as mechanical parts in the manufacturing process. In order to handling those objects using a robot or an automated machine automatically, the pose of the object must be known. The pose can be described by two rotation angles; one angle about the x axis and the other about the y axis. In the many previous researches these angles were obtained by the computationally intensive algorithm, that is, fitting the data as a polynomial and doing pseudo inverse. So that, this method required high performance microprocessor. In this paper in order to avoid complex computation, a new method based on a genetic algorithm is proposed and analyzed through a series of simulations. This algorithm utilized the geometry of the cylindrical shape. The simulation results show that this method find the pose angles very well In most cases, but the computation time is randomly changed because the genetic algorithm is basically one of the random search method.

Fuzzy Combined Polynomial Neural Networks (퍼지 결합 다항식 뉴럴 네트워크)

  • Roh, Seok-Beom;Oh, Sung-Kwun;Ahn, Tae-Chon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.7
    • /
    • pp.1315-1320
    • /
    • 2007
  • In this paper, we introduce a new fuzzy model called fuzzy combined polynomial neural networks, which are based on the representative fuzzy model named polynomial fuzzy model. In the design procedure of the proposed fuzzy model, the coefficients on consequent parts are estimated by using not general least square estimation algorithm that is a sort of global learning algorithm but weighted least square estimation algorithm, a sort of local learning algorithm. We are able to adopt various type of structures as the consequent part of fuzzy model when using a local learning algorithm. Among various structures, we select Polynomial Neural Networks which have nonlinear characteristic and the final result of which is a complex mathematical polynomial. The approximation ability of the proposed model can be improved using Polynomial Neural Networks as the consequent part.

Application of Parameters-Free Adaptive Clonal Selection in Optimization of Construction Site Utilization Planning

  • Wang, Xi;Deshpande, Abhijeet S.;Dadi, Gabriel B.
    • Journal of Construction Engineering and Project Management
    • /
    • v.7 no.2
    • /
    • pp.1-10
    • /
    • 2017
  • The Clonal Selection Algorithm (CSA) is an algorithm inspired by the human immune system mechanism. In CSA, several parameters needs to be optimized by large amount of sensitivity analysis for the optimal results. They limit the accuracy of the results due to the uncertainty and subjectivity. Adaptive Clonal Selection (ACS), a modified version of CSA, is developed as an algorithm without controls by pre-defined parameters in terms of selection process and mutation strength. In this paper, we discuss the ACS in detail and present its implementation in construction site utilization planning (CSUP). When applied to a developed model published in research literature, it proves that the ACS are capable of searching the optimal layout of temporary facilities on construction site based on the result of objective function, especially when the parameterization process is considered. Although the ACS still needs some improvements, obtaining a promising result when working on a same case study computed by Genetic Algorithm and Electimze algorithm prove its potential in solving more complex construction optimization problems in the future.

Geometric position determination algorithm and simultion in satellite navigation

  • Nakagawa, Miki;Hashimoto, Hiroshi;Higashiguchi, Minoru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.672-675
    • /
    • 1994
  • This paper presents a new algorithm to determine the receiver position in satellite navigation for GPS(Global Positioning System). The algorithm which based on vector analysis is able to obtain simultaneously the receiver position and the direction vector which is from the receiver position to a satellite. In its first calculation stage it, does riot require the complex initial value which is used in the previous works and affects the accuracy of the observed receiver position. Furthermore, the algorithm tells us whether a selected configuration among the visible satellites is good or poor for the accuracy. Comparing the algorithm with the previous method, the effectiveness of the algorithm is verified through the experimental simulations.

  • PDF

Optimal Learning of Fuzzy Neural Network Using Particle Swarm Optimization Algorithm

  • Kim, Dong-Hwa;Cho, Jae-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.421-426
    • /
    • 2005
  • Fuzzy logic, neural network, fuzzy-neural network play an important as the key technology of linguistic modeling for intelligent control and decision making in complex systems. The fuzzy-neural network (FNN) learning represents one of the most effective algorithms to build such linguistic models. This paper proposes particle swarm optimization algorithm based optimal learning fuzzy-neural network (PSOA-FNN). The proposed learning scheme is the fuzzy-neural network structure which can handle linguistic knowledge as tuning membership function of fuzzy logic by particle swarm optimization algorithm. The learning algorithm of the PSOA-FNN is composed of two phases. The first phase is to find the initial membership functions of the fuzzy neural network model. In the second phase, particle swarm optimization algorithm is used for tuning of membership functions of the proposed model.

  • PDF

A Modified Dynamic Weighted Round Robin Cell Scheduling Algorithm

  • Kwak, Ji-Young;Nam, Ji-Seung;Kim, Do-Hyun
    • ETRI Journal
    • /
    • v.24 no.5
    • /
    • pp.360-372
    • /
    • 2002
  • In this paper, we propose the modified dynamic weighted round robin (MDWRR) cell scheduling algorithm, which guarantees the delay property of real-time traffic and also efficiently transmits non-real-time traffic. The proposed scheduling algorithm is a variation of the dynamic weighted round robin (DWRR) algorithm and guarantees the delay property of real-time traffic by adding a cell transmission procedure based on delay priority. It also uses a threshold to prevent the cell loss of non-real-time traffic that is due to the cell transmission procedure based on delay priority. Though the MDWRR scheduling algorithm may be more complex than the conventional DWRR scheme, considering delay priority minimizes cell delay and decreases the required size of the temporary buffer. The results of our performance study show that the proposed scheduling algorithm has better performance than the conventional DWRR scheme because of the delay guarantee of real-time traffic.

  • PDF