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Hybrid Genetic Algorithm Reinforced by Fuzzy Logic Controller

Young-Su Yun

School of Automotive, Industrial, and Mechanical Engineering, Taegu University, Kyungsan, 712-714

In this paper, we suggest a hybrid genetic algorithm reinforced by a fuzzy logic controller (flc-HGA) to
overcome weaknesses of conventional genetic algorithms: the problem of parameter fine-tuning, the lack of local
search ability, and the convergence speed in searching process. In the proposed flc-HGA, a fuzzy logic controller
is used to adaptively regulate the fine-tuning structure of genetic algorithm (GA) parameters and a local search
technique is applied to find a better solution in GA loop. In numerical examples, we apply the proposed
algorithm to a simple test problem and two complex combinatorial optimization problems. Experiment results
show that the proposed algorithm outperforms conventional GAs and heuristics.
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1. Introduction

Genetic algorithms (GAs) have proved to be a
versatile and effective approach for solving optimiza-
tion problems. Nevertheless, there are many situations
where simple genetic algorithms do not perform
particularly well: GA has a weakness in taking too
much time to adjust fine-tuning structure of GA
parameters and once the optimum solution region is
identified by GA, finding a true optimum in the region
using GA becomes inefficient or impossible due to the
random nature of GA search.

To improve parameter-tuning problem, Gen and
Cheng (2000) suggested using fuzzy logic controller
(FLC). The pioneering work in extending the fuzzy
logic technique to adaptively adjustment of the
strategy parameters of GA were those of Lee and
Takagi (1993), Xu and Vukovich (1994), Zeng and
Rabenasolo (1997). Zeng and Rabenasolo used cross-
over rate, mutation rate, and crossover position of GA

using a FLC. These parameters are considered input
variables of GA and the parameters are taken the
output variables of the controller.

Wang et al. (1997) used two FLCs: one for the
crossover rate and the other for the mutation rate, and
they suggested that the heuristic updating principle of
the crossover rate and the mutation rate is to consider
changes in the average fitness of the population.

To strengthen the lack of local search ability after
convergence of GA and speed up the convergence
speed, various methods for hybridization with GA
have been developed. Davis (1991) and Ishibuchi et al.
(1993) suggested random generating and test algorithm
and multi-start descent algorithm for initializing GA
populations, respectively. Gen and Cheng(1997)
suggested the theoretical methodologies, Lamarckian
evolution and memetic algorithms, for the comple-
mentary properties of GA and conventional heuristics.
Li and Jiang(2000) presented a new stochastic
approach SA-GA-CA based on proper integration of
simulated annealing algorithm (SA), GA, and chemotaxis
algorithm (CA) for solving complex optimization
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problems. Choi er al.(1997) suggested a hybrid
algorithm mixed by a binary integer programming and
a genetic algorithm

According to these methodologies for various hybridi-
zations, recently hybridized GAs have more robustness
than conventional GAs or conventional heuristics (Gen
and Cheng, 2000; Li and Jiang, 2000; Wu and Chow,
1995), Thus, we develop in this paper hybrid genetic
algorithm with fuzzy logic controller (flc-HGA) to
solve complex combinatorial optimization problems.
In Section 2, the methodologies and the basic
searching procedures of the proposed flc-HGA for
hybrid search are suggested. The overall heuristic
searching procedures of the flc-HGA are suggested in
Section 3. Numerical examples to demonstrate the
effectiveness of the flc-HGA are presented in Section
4 and conclusion follows in Section 5.

2. Hybrid Search

In this section, we suggest the methodologies and the
basic searching procedures for the hybrid search of the
proposed fle-HGA. first, GA procedures, main
algorithm in this paper, are employed. Secondly, the
local search to find better solution and the FLC to
adaptively regulate the rates of crossover and mutation
are proposed.

2.1 Genetic Algorithm

2.1.1 Representation and initialization

+ Representation: In general, there are two types in
representing variables of GA. The first type is
bit-string representation and the second type is
real-number representation (Gen and Cheng, 2000).
Bit-string representation is the most common
representation method used by GA researchers.
However, this representation method probably is
not employed in hybrid algorithms since most of
conventional heuristics do not tend to use this
method. This method also requires so much time
for representing encoding and decoding proce-
dures. Moreover, It probably gives the lack of
precision search ability because of the precision
problem in GA. In the proposed flc-HGA, we use
thus the real number representation instead of
bit-string representation in order to guarantee
precision search of solution and speed up search
process.

« Initialization: For initial populations, we use the
population obtained by random search.

2.1.2 Genetic operators

» Crossover: non-uniform arithmetic crossover method
(Gen and Cheng, 1997). We denote the two string
selected randomly for crossover operation as v
and 1, the offspring 0, and O will be

O,=[c v+ (1—0) vyl
Oy=l[c-v;+(1—0¢) *v]

where ¢ is a random number in range [0, 1].

« Mutation: uniform mutation (Michalewicz, 1994).
For a chosen parent v, if its gene ;3 is randomly
selected for mutation, the resulted offspring is, v”
={m, my, my, -, m],where my is a random
(uniform probability distribution) value within
[mi, mi]

« Selection: we use the mixed strategy with (A +
1 )-selection and elitist selection in the enlarged
sampling space (Gen and Cheng, 1997). This
mixed strategy can make new population as many
as population size for next generation after
arranged as rank both ¢ parents and A offspring.

2.2 Local Search Technique

GA can do global search in entire space but there are
no ways for local search around the convergence area
generated by GA loop, thus GA is sometimes impossible
or insufficient finding a true optimum in the problems
requiring complex and precision values. To overcome
this weakness, various local search methods for
hybridization of GA have been developed (Ishibuchi ez
al., 1993; Li and Jiang, 2000)

One of the most common forms of hybrid GA is to
incorporate a local search technique to the conven-
tional GA loop. With this hybrid approach, local
search technique is applied to each newly generated
offspring to move it to a local optimum before
injecting it into the new population (Davis, 1991). In
the proposed flc-HGA, we also incorporate the
improved hill climbing method to GA loop. This
method improves the conventional hill climbing
method suggested by Michelewicz (1994). The main
difference between two methods is that the proposed
method selects a optimal string among each string as
many as population size in each GA loop, but the
conventional method selects a current string at
random, which makes the former having various
search ability and good solution more than the latter.
Thus, GA carries out global search and the improved
hill climbing method carries out local search around
the convergence area in each GA loop. In this hybrid
strategy, the improved hill climbing method is used as
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an accelerator of GA.

The detailed procedures for the improved hill
climbing method are suggested in Step 3 of Section
3.1

2.3 Adaptively Regulation of Strategy Para-
meters using FLC

FLCs have been proved very useful when the search
processes are too complex for analysis using conven-
tional techniques or when the available sources of
information are interpreted qualitatively, inexactly, or
uncertainty. Recently, using these FLC’s features there
are many researches for fine-tuning of GA parameters.
Most of these researches can adaptively regulate the
GA parameters (crossover rate, mutation rate, and
others), thus much time for fine-tuning of these para-
meters can be saved and the searching ability of GA in
finding a global optimum can be improved more than
conventional GA without FLC.

In the fle-HGA, we use Wang et al. concepts (1997).
This method can make GA parameters, crossover (p.)
and mutation rate(p,), adaptively regulate. The
heuristic updating principle for the crossover rate and
mutation rate is to consider changes in the average
fitness of the population. For minimization problem, if
we set the changes in average fitness at generation ¢
and t—1 to deval(v; £) and Aeval(v; t—1), respec-
tively. These two equations can be expressed as
follows:

pop__size

2 eval(vg; b)

deval(V; t) =

pop__size

pop__size+ off_size

eval(v,;t)
k= pop_size+1

off _size
pop_size

Z eval(vy; t—1)
pop__size

x A

deval(Vit—1)=

pop__size+ off_size

eval(v,;t—1)
k= pop_size+1

off__size

X A

where V= {uv, vy, -, v} T
pop__ size: population size satisfying constraints
off_ size: offspring size satisfying constraints
A a scaling factor that regulates average fitness
as problem type

The ‘constraints’ mentioned above mean the const-
raints subjected to the objective function for minimi-
zation or maximization. pop_size is the population size

generated before crossover and mutation operators in
GA loop and off size is the offspring size generated
after crossover and mutation operators. Especially, all
the strings of pop_size and off _size in GA must satisfy
the constraints mentioned above.

These values must be considered to adaptively
regulate pc and Py as follows:

Procedure: the changes of pc and Py using average
fitness
begin

if e<deval(V;t—1)<yand e<deval( V: t)
< y then increase pc and Py for next generation;
if — ySA?al( Vit—=1)< —eand — y < Jeval
(V,; t) < — e then decrease pc and py for next
generation;
if —e<deval(V;t—1)<eand —e< deval
(V;t)<e then rapidly increase pc and py
for next generation;
end
end

where ¢: a given real number in the proximity of zero
y: a given maximum value of fuzzy member-
ship function
—7: a given minimum value of fuzzy member-
ship function

The implementation strategy for crossover FLC is as
follows:

2.3.1 Inputs and output of crossover FLC

The inputs to the crossover FLC are deval(V;t—1),
Adeval (Vit) and the output of which is the change in
crossover rate dc(t).

2.3.2 Membership functions of deval (V;t—1),
deval (V;t) and Ac(t)

Membership functions of fuzzy input and output
linguistic variables are illustrated in <Figure 1> and

- <Figure 2>. deval(V;t—1) and deval(V;t) are

respectively normalized into the range in [— 1.0, 1.0]
and Ac(¢) is nommalized into the range in [— 0.1, 0.1]
according to their corresponding maximum values.

-0 .08 06 04 0.2 0 0.2 04 06 08 10
Figure 1. Membership function of deval(V;t—1)
and deval(V;t).
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Figure 2. Membership function of AJc(t).

Where: NR—Negative larger, NL—Negative large,
NM-—Negative medium, NS—Negative small, ZE
—Zero, PS—Positive small, PM— Positive medium,
PL — Positive large, PR — Positive larger.

2.3.3 Fuzzy Deciston Table

Based on a number of experiments and domain
expert opinions, the fuzzy decision table was drawn as
shown in <Table 1>.

2.3.4 Defuzzification table for control actions

For simplicity, the defuzzification table for action of
the crossover FLC was setup. It is formulated as
shown in <Table 2>.

Table 1. Fuzzy decision table for crossover

deval(Vit—1)
NR|[NL|NM|NS|ZE|PS |[PM|PL | PR
NR|NR|NL|NL|NM{NM|NS|NS|ZE |ZE
NL |NL | NL |NM|NM|NS |NS | ZE | ZE | PS
NM|NL [NM|{NM|NS |NS|ZE | ZE | PS | PS
NS INM|NM|NS|NS|ZE | ZE | PS | PS |PM
deval(V: )l ZE [NM{NS |NS | ZE {PM| PS | PS | PM | PM
PS|NS|{NS|ZE|ZE|PS|PS |PM|PM|PL
PM|NS|ZE|ZE|PS|PS |PM|PM|PL | PL
PL|ZE|ZE|PS|PS|PM|PM|PL | PL | PR
PR|{ZE | PS |PS|PM{PM|PL | PL | PR{PR

de(t)

Table 2. Defuzzification table for control action of
crossover
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Figure 3. Coordinated strategy of FLC and GA.

The inputs of mutation FLC are the same as the
crossover FLC and output of which is the change in
mutation rate. The combination strategy used in this
paper between FLC and GA is shown in <Figure 3>.
The detailed procedures for adaptively regulation of
GA strategy parameters are suggested in Step 4 of
Section 3.1.

3. Proposed Algorithm

3.1 Heuristic procedure

In this section, we suggest the overall procedure of the
proposed flc-HGA with a local search and a FLC. The
heuristic search procedure for the flc-HGA is as follows:

u fle-HGA procedure with a local search and
a FLC

Step 1: Initial population
We use the populations obtained by random search

Step 2: Genetic Operators
+ Crossover: non-uniform arithmetic crossover operator
+Mutation: uniform mutation operator
+ Selection: the mixed strategy with (A+ x)-selection
and elitist selection in enlarged sampling space

Step 3: Local Search Technique
Using offspring obtained after mutation operation
of GA, the improved hill climbing method is
applied as follows:

Procedure: the improved hill climbing method
begin
t<—0;
repeat
local < FALSE;
select a optimum string v. among each
string as many as population size of
GA;
repeat
make new strings as many as
population size in the neighborhood
Of Ve,
select a string v, with the best fitness
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value of objective function f from
the set of new strings;
if f(vo) <f(vn)
then v, < v,
else Jocal — TRUE
end if
until local
t—t+1;
until ¢ = population size
end

Step 4: Adaptively regulation of GA strategy para-
meters using FLC

+The input variables of the FLC for GA parameters
are the changes in average fitness at generation ¢
and ¢ —1 as follows.

deval(V; 1), deval(V: t—1)

«Determine control actions to Adevel(V;¢) and
deval( V; t—1) using fuzzy decision table (Wang
etal., 1997).

+ After scaling the control actions by assigning the
indexes ; and ; corresponding to the control actions
in the defuzzification table (Wang et al., 1997),
calculate the changes of crossover rate Jc(¢) and
mutation rate Jm(t) as follows:

dc(t) = Z(4, ) x0.02, dm(t) =Z (i, j)*x0.002

where the contents of Z(j, j) are the corresponding
values of deval(v; t—1) and deval(v; ¢) for defu-
zzification.

+Update the changes of crossover rate and mutation
rate by the following equations:

pc(t) = pc(t—1) + 42),
pu(t) = py(t—1) + dm(t)

where pc(t) and pu(t) are respectively crossover
rate and mutation rate at generation ¢.

Step 5: Termination condition
If the maximum generation number is satisfied,
then stop; otherwise, go to Step 2.

Overall procedure of the flc-HGA is as follows:

Procedure: Overall procedure of fle-HGA

begin

t<0;

initialize P(¢) using random search;

while (not termination condition) do
apply genetic operators into the F(t) to
yield C(¢);
apply local search technique into C(¢) to

improve C(t);
evaluate C(¢);
adaptively regulate genetic operation rates
using FLC;
select P(¢+1) from P(¢) and C(¢) using
enlarged selection strategy;
t—t+1;
end
end

The concept of hybrid search strategy for the proposed
flc-HGA is displayed in <Figure 4>
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Figure 4. Hybrid search strategy of flc-HGA.

4. Numerical Example

In numerical example, we suggest a simple test problem
and two complex combinatorial optimization problems.
In the simple test problem we apply various
experimental conditions to prove an ability of the pro-
posed fle-HGA. In the two examples, we compare
flc-HGA to several conventional heuristic algorithms
and a conventional GA. The proposed procedures are
implemented in Visual Basic language on IBM-PC
P400 computer with 256M RAM.

4.1 A Simple Test Problem
This problem is firstly suggested by Michelewicz
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Table 3. Experimental conditions
No. of . Searching range
iteration Pop__size| Pc | Pn for local search
Case 1] 1,000 20 0.51] 0.1 0.01
Case2| 3,000 50 ol "
Case3| 5,000 100 nolow "

Lacal optima
Local optuna
'Global optinmm
-1
-2 1526 -126 ~0875 ~08 0125 n2e 0625 1

Figure S. Searching space of test problem.

(1994) and usually used as test problem. The function
is as follows:

minimize f(x) = —x, sin (10mx,) + 1
subjectto —2.0 <x;<1.0

This problem is a multimodel function with many
local optima as <Figure 5> and optimal value has been
known as f(x) = —0.85027 when x; is 1.8505.

We analyzed this problem under three conditions as
<Table 3> and separated our flc-HGA into three parts:
local search (LS), genetic algorithm with the FLC (GA

with FLC), and the flc-HGA respectively, to prove the
ability of hybrid algorithm and fuzzy logic controller.
We also applied simple genetic algorithm (SGA)
suggested by Goldberg (1989) to compare the flc-
HGA with conventional genetic algorithm. The results
applied shown in <Table 4>.

In <Table 4>, the proposed flc-HGA finds the
optimal value under all the conditions and is run faster
than SGA and GA with FLC in average time. In the
aspect of fitness, average fitness, best fitness, and
worst fitness, the flc-HGA finds optimal solution
under all the conditions. In the comparison of S. D.,
the flc-HGA and GA with FLC showed very small
variations rather than the other two methods, the LS
and SGA. These results prove that GA with FLC can
get a better solution than GA without FLC and also the
proposed fle-HGA is more effective and robust than

Table 4. Experimental results for a simple test problem

LS SGA GA with FLC flc-HGA
Best -0.85027 -0.85006 ~0.85027 -0.85027
Fitness Average ~0.39044 -0.83853 ~-0.85026 n
Worst +0.34922 -0.82234 -0.85019 "
Case 1 S.D. 3.53 E-01 1.1 E-02 2.63 E-05 8.74 E-07
Average Time 1 1 1 1
gpu:ﬁzz gf:arch None None 6 10
Best -0.85027 -0.85026 -0.85027 ~-0.85027
Fitness Average -0.59032 ~-0.84998 " "
v Worst -0.25040 -0.84928 " "
Case 2 S.D. 2.12 E-01 3.01 E-04 3.11 E-07 3.98 E-07
Average Time 1 16.8 4 4
N
Op“gl}r’): . 3 None 10 10
Best -0.85027 -0.85027 -0.85027 -0.85027
Fitness Average -0.77028 -0.85026 " "
Worst -0.45034 -0.85020 " "
Case 3 S.D. 1.40 E-01 2.1 E-05 6.40 E-08 8.76 E-09
- | Average Time 2 115.4 21 20.7
Number
Optimal giarch 7 3 10 10

* Time unit: second
* Average Time: average time after10 times run
* S.D: standard deviation after 10 times run.
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Figure 6. Convergence process to optimal solution.

the other three algorithms.

<Figure 6> shows the convergence process to
optimal solution in best fitness and worst fitness of
Case 1 in <Table 3>. In <Figure 6(a)>, we can find the
global optimum in best result, but we can't find the
global optimum in worst result. These results show the
typical property of local search. In the case of SGA of
<Figure 6(b)>, both the results can’t reach the global
optimum. This shows that SGA does well global
search but can’t do local search within convergence
area. In <Figure 6(c)> and <Figure 6(d)>, the FLC is
applied, which makes the methods finding the global
optimum. However, <Figure 6(d)> can reach the
global optimum very faster than <Figure 6(c)>. This
shows that the flc-HGA has the ability of local search
and thus is converged to global optimum very fast.

4.2 Design of the Gear Train

The problem of gear train was applied by Sandgran
(1990), Fu et al. (1991), and Wu and Chow (1995).
The mathematical formulation for this problem can be
written as follows:

minimize f(x) = (1/6.931 — x,%y/x32,)*
subjectto 12<x,<60 i=1,2,3,4
Each variable must have integer value ranging from

12 to 60. For this problem Sandgran and Fu et al.
applied nonlinear branch and bound (NB & B) and

integer-discrete-continuous non-linear programming
(IDCNLP), respectively. Wu and Chow suggested the
Meta genetic algorithm (Meta-GA) that four para-
meters are to be optimized: population size, crossover
rate, mutation rate, and crossover operator. Using
these four combinations, they tried to find a optimal
solution. <Table 5> shows optimal solutions obtained
by the conventional heuristics (NB & B, IDCNLP),
Meta- GA, and the flc-HGA of this paper. It is noted
that the results of the flc-HGA and Meta-GA have a
better solution than those of conventional heuristics
(NB&B, IDCNLP). In the flc-HGA, the parameters
used are as follows: population size = 10, initial cross-
over rate = 0.5, initial mutation rate = 0.1, termina-
tion condition = 2000, and search range = 0.5 for the
improved hill climbing method.

For more detailed comparison of the flc-HGA, we
used Simple GA (SGA) suggested by Goldberg (1989).

Table 5. Experimental results for the design of

gear train
Type of
NB&B | IDCNLP | Meta-GA | fle-HGA .
variables
x1 18 14 19 16 Integer
2 22 29 16 19 Integer
X3 45 47 43 49 Integer
X4 60 59 49 43 Integer
f()|57x107° | 45x107° | 27x107* | 27x 107"
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Table 6. Fitness of the flc-HGA and SGA for
the design of gear train

Population Size
Fitness 10
SGA | Time (sec.)| flc-HGA | Time (sec.)
Best | 3.98E-08 2 2.3E-11 13
Average | 3.40E-07 2.5 9.05E-10 1
Population Size
Fitness 50
SGA | Time (sec.)| flc-HGA |Time (sec.)
Best | 1.16E-09 29 2.7E-12 9
Average| 5.2E-08 30 1.28E-10 9.3
Population Size
Fitness : 100
SGA | Time (sec.) | flc-HGA |Time (sec.)
Best | 1.12E-08 53 2.7E-12 24
Average | 7.40E-08 54 3.03E-11 24.4

The parameters of same condition are used in the
fle-HGA and SGA, excepting population size. For
population size, we divide it into three types: popula-
tion size = 10, 50, 100, and each has 10 times run, the
best and average fitness of the flc-HGA and SGA are
listed in <Table 6>. Also for the SGA, crossover rate =
0.3, 0.5, 0.7 are used respectively and mutation rate =
0.05, 0.1, 0.3 are used, respectively. Thus the total
number of parameter combination for the SGA, the
number of different SGA, is 9(3 X 3). According to the
population size (10, 50, 100), we also have 10 times
run under each different SGAs for searching an
optimal combination in these parameters. As applying
result, crossover and mutation rates were 0.7, 0.03
respectively for each population size 10, 50, and 100.
In <Table 6>, the best and average fitness of three
types obtained by applying the flc-HGA are better than
those of SGA, and computational times of flc-HGA in
all population size is also better than those of SGA.
<Figures 7> and <Figure 8> also show that the
fle-HGA and Meta-GA are more stable than SGA and
converge rapidly. <Figures 9> and <Figure 10> show
the behaviors of crossover rate (P¢) and mutation rate
(Pn) as generations are proceed. In these Figures, the
flc-HGA has various variations in P, and P,, because
of applying the FLC. These results can make the
flc-HGA searching various search space. Thus, the
flc-HGA seems to be more robust than conventional
heuristics, Meta- GA, and SGA. To compare the evolu-
tion behaviors of average fitness, we checked the case

100E+00 Tryrerrrr

1006107 | PP LSS S S
100E-03 1 ']

100E-04 4
100E-05 4

100E-06 | Static parameter GA(SGA)
100E-07 4

L 00E-08 1 Dynamic parameter GA((lc-HGA)

1.00E-09 / +
LooE-10 4 Static parameter GA(Meta-GA)
1.00E-11 4 ¥

1.008~12
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Generation Number
Figure 7. Convergence situation to optimal solution.
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Static parameter GA(SGA)

—

Generation Number

Figure 8. Convergence situation at population
size =100,

Dynamic parameter GA(Mc-HGA)
Static parameter GA(SGA)

00 1000
Generantion Number

Figure 9. Behaviors of crossover rate in flc-HGA
and SGA.

Rate o

Dynamic parameter GA(fle-FHGA)

Static parameter GA(SGA),

Y

son 1000
Generation Number

Figure 10. Behaviors of mutation rate in
flc-HGA and SGA.

with the FLC and the case without the FLC in the
fle-HGA. In <Figure 11>, the case with FLC .(a)
converges more rapidly and variously than that of the
case without the FLC (b). This means that the GA
populations with the FLC are more diversified than
those without the FL.C. Thus the case with the FLC
has more possibility to converge to an optimal solution
than the case without the FLC in the flc-HGA.
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Figure 11. Evolutionary behaviors of the
average fitness.

<Figure 9>, <Figure 10>, and <Figure 11> show the
adaptively regulation abilities of the FLC. In <Figure
11(a)>, it is shown that the average fitness rapidly
converges between the initial generation and the 100th
generation. This means that the rates of P, and P,
should be rapidly increased at the same generation.
We can also find these same situations in <Figure 9>
and <Figure 10>. According to these facts, we can
prove that the proposed flc-HGA satisfy well the
concepts of the FLC used in this paper.

4.3 Design of the Coil Compression Spring

The problem of designing coil compression spring
was applied by Sandgran (1990), Chen and Tsao
(1993), and Wu and Chow (1995). The mathematical
formulation of this problem can be written as follows:

minimize f(x) = 2lx,x5(x, + 2)/4
subject to
£1(x) = (8C/F oy %2/ 7x3) — s<0
8o (x) = Iy — Ly <0
&3(%) = dpin — %350
2.(0) = x5+ 23— Dy <0

dmin = 0.21inch D« = 3.0inch
F,=1300.01b 8m = 6.0inch
8, = 1.251inch G=11.5x%10% psi.
sz (4 (xz/x3) -1/ (xz/x:s) - 4)

- 0.165353/962

In this problem, the design variables are considered
by integer, continuoys, and discrete variables. Especially,
discrete variables are used pre-defined discrete
dimensions. For this problem, Sandgran (1990) and
Chen and Tsao (1993) applied nonlinear branch and
bound (NB & B) and simple GA (GA), respectively.
Wu and Chow (1995) applied Meta-GA in which used
same method along with the design of the gear train.
And also the flc-HGA followed the same method. The
results applied are shown in <Table 7>. For more
detained comparison, we used the same conditions in
the design of the gear train. The best and average fitness
of the flc-HGA and SGA are shown in <Table 8>.

In <Table 7>, the result of the flc-HGA is better
than those of the NB & B, GA, and Meta-GA. This
result implies that the flccHGA obtains a better solu-
tion than the NB & B, GA and Meta-GA in the contin-
uous and discrete variables, and also implies that the
local search technique apply into GA loops for preci-
sion search in convergence region by GA. <Table 7>
also shows that the flc-HGA have more effectiveness
and robustness than the NB&B, GA and Meta-GA
because the best and average fitness of the fle-HGA
are better than those of the NB&B, GA, Meta-GA, and
SGA in <Table 7> and <Table 8> under all the conditions.

These results also proved in <Figures 12> and
<Figure 13>, The various behaviors of crossover rate
and mutation rate are shown in <Figures 14> and
<Figure 15>, In <Figure 16>, the evolutionary behaviors
of average fitness with the FLC (a) and that of average
fitness without the FLC (b) in the flc-HGA are showed.
Average fitness with the FLC is more various and is
converged more rapidly than that without the FLC (b).

Table 7. Experimental results for the design of
coil compression spring

g5(x) = 3.0 — (x2/%3) <0
gs(x) = 6p_ é‘ﬂmSO
&1(0) =8, + (Frax — Fy)/K
+1.05(x;, +2)x3 — ;<0
g3(x) = 8, + (Fou — Fp)/K<0
The parameters used above are as follows:

NB&B| GA |Meta-GA|fic-HGA| 1YPeOf
variables
%1 10 9 9 9 Integer
x2 1.181 | 1.229 1.227 1.109 | Continuous
x3 | 0.283 [0.283| 0.283 0.263 Discrete
F(x) 12,7995 [2.671] 2.668 2.082
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Fitness of flc-HGA and SGA for the design
of coil compression spring

Population Size
Fitness 10
SGA | Time (sec.) | flc-HGA | Time (sec.)
Best 2.09 2 2.083 5
Average| 2.19 2 2.095 5
Population Size
Fitness 50
SGA | Time (sec.)| fle-HGA | Time (sec.)
Best 2.14 41 2.082 16
Average | 2.26 41 2.083 16.4
Population Size
Fitness 100
SGA | Time (sec.)| flc-HGA |Time (sec.)
Best 2.10 128 2.082 40
Average | 2.11 129 2.085 40
1.0
Static parameter GA(SGA)
Static parameter GA(Meta-GA)
/ Dynamic parameter GA
g ] (flc-HGA)
£
=
o

Generation Number

Figure 12. Convergence situation to
optimal solution.

3.0 ] 2.115
. L
3 4
é 1.5 Static paraieter GA 2.09
(SGA)
I Dynamic pafameter GA(fic-HGA) )
0 2.065

Generation Number

Figure 13. Convergence situation at
population size = 100.

According to these three numerical examples, it is
proved that the proposed flc-HGA applied by the FLC
and a local search technique is more effective and
robust than conventional heuristics (NB & B, IDCNLP),

Meta- GA and SGA.

1.0
=
=)
0.5 ] L L LML L ‘
Stati parnmeter\ Dynamic parameter
° GA(SGA) GA(fle-HGA)
500 1000
Generation Number
Figure 14. Behaviors of crossover rate
in flc-HGA and SGA.
1.0
§ Static parameter Dynamic parameter
GA(SGA) GA(flc-HGA)
0.5
o
500 1000
Generation Number
Figure 15. Behaviors of mutation rate
in flc-HGA and SGA.
Average fitness with FLLC
4
5]
P
=
(1]
500 1000
Generation Number
@)

k\ Average fitness without ¥FLC

P A e AN drdoradinBra g <, A 1A
L vy 9 Y

500 1000
Generation Number

(b)

Figure 16. Evolutionary behaviors of the
average fitness.

5. Con_clusion

In this paper, we proposed a new genetic algorithm
(fle-HGA), the hybrid genetic algorithm with a FLC
and a local search technique, to overcome the weakness
of conventional GAs: the problem of parameter fine-
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tuning and premature convergence of solution process.
In the flc-HGA, the FLC to adaptively regulate GA
parameters (crossover rate and mutation rate) and the
local search technique to find a better solution are
combined with GA, respectively. Numerical comparison
experiments demonstrated that the proposed algorithm
is more effective and has more robustness than the
conventional heuristics and conventional genetic
algorithm.
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