Journal of the Korean Institute of Intelligent Systems
/
v.8
no.2
/
pp.106-116
/
1998
A position control algorithm of a flexible manipulator is studied. The proposed algorithm is based
on an ACFAC(Automatic Constructed Fuzzy Adaptive Controller) system based on the neural
network learning algorithms. The proposed system learns membership functions for input variables
using unsupervised competitive learning algorithm and output information using supervised outstar
learning algorithm. ACFAC does not need a dynamic modeling of the flexible manipulator. An
ACFAC is designed that the end point of the flexible manipulator tracks the desired trajectory. The
control input to the process is determined by error, velocity and variation of error. Simulation and
experiment results show a robustness of ACFAC compared with the PID control and neural network
algorithms.
Group method of data handling (GMDH) is considered one of the earliest deep learning methods. Deep learning gained additional interest in today's applications due to its capability to handle complex and high dimensional problems. In this study, multi-layer GMDH networks are used to perform uncertainty quantification (UQ) and sensitivity analysis (SA) of nuclear reactor simulations. GMDH is utilized as a surrogate/metamodel to replace high fidelity computer models with cheap-to-evaluate surrogate models, which facilitate UQ and SA tasks (e.g. variance decomposition, uncertainty propagation, etc.). GMDH performance is validated through two UQ applications in reactor simulations: (1) low dimensional input space (two-phase flow in a reactor channel), and (2) high dimensional space (8-group homogenized cross-sections). In both applications, GMDH networks show very good performance with small mean absolute and squared errors as well as high accuracy in capturing the target variance. GMDH is utilized afterward to perform UQ tasks such as variance decomposition through Sobol indices, and GMDH-based uncertainty propagation with large number of samples. GMDH performance is also compared to other surrogates including Gaussian processes and polynomial chaos expansions. The comparison shows that GMDH has competitive performance with the other methods for the low dimensional problem, and reliable performance for the high dimensional problem.
Animating multiple characters to compete with each other is an important problem in computer games and animation films. However, it remains difficult to simulate strategic competition among characters because of its inherent complex decision process that should be able to cope with often unpredictable behavior of opponents. We adopt a reinforcement learning method in Markov games to action models built from captured motion data. This enables two characters to perform globally optimal counter-strategies with respect to each other. We also extend this method to simulate competition between two teams, each of which can consist of an arbitrary number of characters. We demonstrate the usefulness of our approach through various competitive scenarios, including playing-tag, keeping-distance, and shooting.
Multi-agent system fits to the distributed and open internet environments. In a multi-agent system, agents must cooperate with each other through a coordination procedure, when the conflicts between agents arise. Where those are caused by the point that each action acts for a purpose separately without coordination. But previous researches for coordination methods in multi-agent system have a deficiency that they cannot solve correctly the cooperation problem between agents, which have different goals in dynamic environment. In this paper, we suggest the automatic coordination model for multi-agent system using neural network and reinforcement learning in dynamic environment. We have competitive experiment between multi-agents that have complexity environment and diverse activity. And we analysis and evaluate effect of activity of multi-agents. The results show that the proposed method is proper.
Recently, population based optimization algorithms are developed to deal with a variety of optimization problems. In this paper, the salp swarm algorithm (SSA) is dramatically enhanced and a new algorithm is named Enhanced Salp Swarm Algorithm (ESSA) which is effectively utilized in optimization problems. To generate the ESSA, an opposition-based learning and merit function methods are added to standard SSA to enhance both exploration and exploitation abilities. To have a clear judgment about the performance of the ESSA, firstly, it is employed to solve some mathematical benchmark test functions. Next, it is exploited to deal with engineering problems such as optimally designing the benchmark buildings equipped with multiple tuned mass damper (MTMD) under earthquake excitation. By comparing the obtained results with those obtained from other algorithms, it can be concluded that the proposed new ESSA algorithm not only provides very competitive results, but also it can be successfully applied to the optimal design of the MTMD.
Proceedings of the Korean Society of Computer Information Conference
/
2021.07a
/
pp.313-315
/
2021
Timely and accurate diagnosis of lung diseases using Chest X-ray images has been gained much attention from the computer vision and medical imaging communities. Although previous studies have presented the capability of deep convolutional neural networks by achieving competitive binary classification results, their models were seemingly unreliable to effectively distinguish multiple disease groups using a large number of x-ray images. In this paper, we aim to build an advanced approach, so-called Ensemble Knowledge Distillation (EKD), to significantly boost the classification accuracies, compared to traditional KD methods by distilling knowledge from a cumbersome teacher model into an ensemble of lightweight student models with parallel branches trained with ground truth labels. Therefore, learning features at different branches of the student models could enable the network to learn diverse patterns and improve the qualify of final predictions through an ensemble learning solution. Although we observed that experiments on the well-established ChestX-ray14 dataset showed the classification improvements of traditional KD compared to the base transfer learning approach, the EKD performance would be expected to potentially enhance classification accuracy and model generalization, especially in situations of the imbalanced dataset and the interdependency of 14 weakly annotated thorax diseases.
Journal of Korea Society of Digital Industry and Information Management
/
v.20
no.2
/
pp.109-123
/
2024
The purpose of this study is to identify strategic insights for cyber universities to secure a competitive advantage based on market analysis grounded in customer needs and motivations. As a research method, we surveyed and analyzed college students using conjoint analysis, identified the importance of cyber university components, estimated the utility of each detailed level, and identified the configuration of cyber universities most preferred by potential customers. In the study results, the importance of attributes that appeared by analyzing all respondents was in the order of 'expected ourcoms after graduation', 'department characteristic', 'cyber university name', and 'learning management style'. Cluster analysis was performed, divided into two groups, and conjoint analysis was performed. For Cluster 1, the importance values of the components were 'expected outcomes after graduation,' 'learning management style,' 'cyber university name,' and 'department characteristics,' in that order. For Cluster 2, the importance values were 'expected outcomes after graduation,' 'department characteristics,' 'cyber university name,' and 'learning management style,' in that order. As an application of the research, As an application of the study, it is suggested that analyzing the preferences of potential customers in the entire group is not accurate; therefore, segmenting the groups for analysis and strategy formulation can be useful.
Asia-Pacific Journal of Business Venturing and Entrepreneurship
/
v.10
no.6
/
pp.1-13
/
2015
There are various performance factors for SMEs in order to survive in the rapid changing market and it is discussing the importance of entrepreneurs' entrepreneurial orientation based on many researches. Thus, it is worth to analyze factors of seize new opportunity and firm's performance to build sustainable competitive advantages, which provide the directions to SMEs. This study investigates through exploratory research that the important factors of entrepreneurial orientation and the influence factors on firm's performance confirmed by empirical study. This study was conducted to explore the relationship between entrepreneurial orientation of SME CEO, learning orientation and corporate performance was verified following section. First, entrepreneurial orientation (pro-activeness, competitive aggressiveness, risk taking, innovativeness) was to examine the effect of learning orientation; Second, entrepreneurial orientation was to examine the impact on firm's performance; and in the last, validated learning orientation affect factors that are mediated between entrepreneurship orientation and firm's performance through empirical research. The results of this study, each SME have shown that they have a different impact on firm's performance based on a variety of entrepreneurial orientation. This result shows that the need for a separate independent study on entrepreneurial orientation of SMEs. In conclusion, this study implicates that entrepreneurial orientation is important role for firm's performance, entrepreneurs of SMEs are innovative rather than competitive aggressive, and risk taking activities positively affect firm's activity. The conclusions of this study would be utilized to develop the entrepreneurial orientation when necessary for entrepreneurs of SMEs.
Lee, Jin Gu;Lee, Jae Young;Jung, Il Chan;Kim, Mi Hwa
The Journal of the Korea Contents Association
/
v.22
no.10
/
pp.765-777
/
2022
The purpose of this study is to present a digital transformation-based learning model that can be used in universities based on learning digital transformation in order f to be competitive in a rapidly changing environment. Literature review, case study, and focus group interview were conducted and the implications for the learning model from these are as follows. Universities that stand out in related fields are actively using learning analysis to implement dashboards, develop predictive models, and support adaptive learning based on big data, They also have actively introduced advanced edutech to classes. In addition, problems and difficulties faced by other universities and K University when implementing digital transformation were also confirmed. Based on these findings, a digital transformation-based learning model of K University was developed. This model consists of four dimensions: diagnosis, recommendation, learning, and success. It allows students to proceed with learning by diagnosing and recommending various learning processes necessary for individual success, and systematically managing learning outcomes. Finally, academic and practical implications about the research results were discussed.
Outsourcing is procuring of outside resources, other than core resources for core competence, by a contract, from which a corporate can focus its core resources on core business. The outsourcing strategies of Korea tourist hotel business are in a rudimentary stage, which has been limited in simple work areas such as housekeeping services, room maid services, parking control services, security services, janitor services, laundry services, facility management, shuttle bus services, and sterilization services and their purposes are mainly to retrench a burden of employment or firm-fixed expenses. Therefore, the outsourcing strategies of Korea tourist hotel business have the following problems. First, their outsourcing has introduced only for the purpose of retrenching expenses. Second, it tends to deteriorate service quality, due to lack of pre-training. Third, it tends to concentrate their attentions only on simple repetition works. Fourth, their outsourcing is slow adjusted to the needs of business cultures. Outsourcing services in Korea tourist hotel business have never contributed to their basic concepts such as 1) maintenance or enhancement of core competences, 2) promotion of business efficiency through service quality improvement and expense retrenchment, and 3) achievement or enhancement of competitive advantage through enlarging their specialties, cultivating their market, learning new knowledge, and developing their asset. Therefore, this study is to insist on fife necessity of overcoming simple repetitive service outsourcing in tourist hotel business. In order to build a core competence and/or achieve a competitive advantage, the scopes of outsourcing services should be enlarged in Korea tourist hotel business.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.