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a b s t r a c t

Group method of data handling (GMDH) is considered one of the earliest deep learning methods. Deep
learning gained additional interest in today's applications due to its capability to handle complex and
high dimensional problems. In this study, multi-layer GMDH networks are used to perform uncertainty
quantification (UQ) and sensitivity analysis (SA) of nuclear reactor simulations. GMDH is utilized as a
surrogate/metamodel to replace high fidelity computer models with cheap-to-evaluate surrogate
models, which facilitate UQ and SA tasks (e.g. variance decomposition, uncertainty propagation, etc.).
GMDH performance is validated through two UQ applications in reactor simulations: (1) low dimen-
sional input space (two-phase flow in a reactor channel), and (2) high dimensional space (8-group ho-
mogenized cross-sections). In both applications, GMDH networks show very good performance with
small mean absolute and squared errors as well as high accuracy in capturing the target variance. GMDH
is utilized afterward to perform UQ tasks such as variance decomposition through Sobol indices, and
GMDH-based uncertainty propagation with large number of samples. GMDH performance is also
compared to other surrogates including Gaussian processes and polynomial chaos expansions. The
comparison shows that GMDH has competitive performance with the other methods for the low
dimensional problem, and reliable performance for the high dimensional problem.
© 2019 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

After the sharp growth in deep learning development, re-
searchers started to utilize deep networks for many applications
such as pattern recognition, big data analysis, signal processing,
text generation, automatic game playing, and many other applica-
tions [1,2]. Deep learning is a form of machine learning that relies
on multiple processing layers to learn representations of big data-
sets with abstract and complex structure. Therefore, deep learning
networks are expected to avoid the curse of dimensionality, which
is a major problem for large-scale models with complex structure
and large number of inputs [3e5].

Uncertainty Quantification (UQ) and Sensitivity Analysis (SA)
are broad areas in scientific computing to assess the performance of
mathematical and engineering models [6,7]. Most of the UQ and SA
tasks require several runs of a computer model that can be
computationally demanding. A substitute called surrogate model,
metamodel, or reduced order model (ROM) is constructed based on
eh).

by Elsevier Korea LLC. This is an
training data from the original model, and it can be used instead of
the original model for UQ and SA [8,9]. Training surrogates is per-
formed using machine learning methods including but not limited
to: Kriging or Gaussian processes [10,11], radial basis functions [12],
neural networks [13], polynomial chaos expansions [14], and many
others. The curse of dimensionality causes many of the surrogate
modeling methods to perform poorly when the number of input
features, number of output variables, and/or number of data sam-
ples is high. Deep learning demonstrated good performance in
such cases. For example, a high dimensional UQ framework was
developed in Ref. [15] through learning deep neural networks
(DNN) with parameterization done through recovering a low-
dimensional nonlinear active subspace. In a recent research, a
Bayesian fully convolutional encoderedecoder network for surro-
gate modeling and UQ was introduced by Ref. [16], with an appli-
cation to stochastic partial differential equations with high
dimensional nature.

Group method of data handling (GMDH) networks [17,18] are
considered one of the earliest deep learning methods by some
authors [19]. GMDH has been developed with an aim of parametric
optimization and mathematical modeling of complex systems. The
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GMDH was revisited and developed by S.J. Farlow in Ref. [20]. A
review by Ref. [21] highlighted the problems that can be solved by
GMDH such as pattern recognition, clustering, prediction, and
many others. GMDH networks are created based on special poly-
nomial activation functions called KolmogoroveGabor poly-
nomials, which are widely used to construct general non-linear
models [22]. Given a training data set, GMDH layers are incre-
mentally grown and trained by regression methods. External vali-
dation criterion is used to optimize the neurons within the hidden
layers to stop training. GMDH was utilized in many applications
such as semiconductor manufacturing [23], recognition of medical
image of blood vessels [24], fault identification [25], fluid flow
simulations [26], and many more. For nuclear applications, GMDH
was used for different purposes such as predicting the break size in
loss of coolant accidents [27], heat transfer applications [28],
reactor power shaping and sensing [29,30], and monitoring and
fault diagnosis in steam generators and thermal systems [31,32].

High dimensionality in nuclear reactor modeling is a known
problem, especially in multiphysics and coupled simulations,
which require surrogate models with good performance in high
dimensional spaces. The goal of this study is to introduce GMDH
as an example of deep learning in the context of UQ of reactor
simulations, as utilizing GMDH for UQ is limited in the literature.
The GMDH approach is adopted in this study to construct deep
networks to capture the input-output relationship. Important
aspects of constructing GMDH networks such as number of neu-
rons, polynomial activation function, validation criteria, etc. are
discussed and explored. Comparison of GMDH performance with
other common machine learning methods is conducted including
Gaussian processes and polynomial chaos expansions. Two case
studies in reactor physics and thermal-hydraulics simulations are
used to investigate GMDH performance. The first case is a low
dimensional problem of two-phase flow in a boiling water reactor
(BWR) channel. The second case is a high dimensional problem of
the 8-group homogenized neutron cross-sections to predict the
lattice reactivity (k∞). Afterward, GMDH networks are utilized to
perform SA and UQ tasks such as variance decomposition and
uncertainty propagation. Conclusions and observations about the
applied methods are drawn and discussed based on the results.
The remaining sections of this paper are organized as follows:
section 2 discusses the theory, the methodology, and the appli-
cations utilized in this study. Learning GMDH networks is
described first, followed by a brief description of the other met-
amodelling methods used for comparison. Afterward, de-
scriptions of the validation metrics and applications used to assess
all methods are presented. Section 3 presents the results obtained
from this study and their discussion, followed by the conclusions
in section 4.

2. Methodology and applications

In this section, the GMDH method implemented in this study is
described in detail, followed by a brief description of the other
metamodelling techniques used for comparison with GMDH per-
formance. The validation metrics used to evaluate the constructed
models as well as the reactor applications used in this study are
described next.

2.1. GMDH

2.1.1. Principles of GMDH
GMDH is an iterative multi-layer approach trained by regression

methods [18,20]. The fundamental difference between GMDH
and other linear/nonlinear regression methods is that it offers an
efficient optimization and search for the best model representing
the relationship between the input-output. This means that some
input parameters can be eliminated during the search process in
GMDH, which can be valuable for complex and high dimensional
problems. GMDH constructs a high-order polynomial called
KolmogoroveGabor, which has the following form [17,18,20].

YGMDH ¼ a0 þ
Xd
i¼1

aixi þ
Xd
i¼1

Xd
j¼1

aijxixj þ
Xd
i¼1

Xd
j¼1

Xd
k¼1

aijkxixjxk

þ…;

(1)

where YGMDH is the GMDH prediction of a single model output, xi is
a model input parameter, a's represent polynomial coefficients, and
d is the number of input parameters in the model (input dimen-
sionality). There are different GMDH training algorithms, both in
parametric and non-parametric forms [33]. In this work, the
parametric multi-layer GMDH algorithm is used. GMDHmulti-layer
approach is an inductive procedure that sorts out polynomial
models, and selects the best solution (neuron) by means of an
external criterion (to be defined next).

2.1.2. Components of GMDH networks
GMDH networks, like other neural networks, consist of three

main components: input layer, hidden layer(s), and output layer.
Each hidden layer contains a set of neurons determined by the
number of possible combinations between the input parameters.
The three layers are described as follows:

� Input layer: This layer has the training samples for all input
parameters in the model ( x!).

� Output layer: This layer has the output prediction (YGMDH) by
the GMDH networks.

� Hidden layer(s): The first hidden layer takes its input from the
input layer, while each subsequent hidden layer takes the input
from the preceding layer. For example, for two input parameters
(xi;xj), the output of a neuron in the first hidden layer (assuming
linear model with interaction) can be written as

Y ¼ a0 þ a1xi þ a2xj þ a3xixj; (2)

the second hidden layer uses the first layer as an input to construct
another polynomial as follows

Z¼ b0 þ b1Yi þ b2Yj þ b3YiYj; (3)

and so on for the other layers. The output of the last hidden layer is
forwarded to the output layer. Neurons in the hidden layers are the
most important part of GMDH, as they control the input-output
relationship to be passed between layers.

Two major parameters associated with the neurons need to be
specified by the user. The first parameter is the number of input
factors (nx) accepted by each neuron, which is used to generate all
neurons in each hidden layer based on all possible combinations of
the input factors. For example, if nx ¼ 2, then the first neuron takes
input from (x1x2), second neuron takes input from (x1x3), and so on
for all remaining input factors. The second parameter is the order of
the polynomial constructed within each neuron (p). This parameter
determines the polynomial order and hence the number of co-
efficients to be determined by least-squares within each neuron.
For example, for nx ¼ 2, the output from each neuron can be
determined for the first, second, and third order polynomials as
follows



Y ¼ a0 þ a1xi þ a2xj þ a3xixj; for p ¼ 1;
Y ¼ a0 þ a1xi þ a2xj þ a3xixj þ a4x

2
i þ a5x

2
j ; for p ¼ 2;

Y ¼ a0 þ a1xi þ a2xj þ a3xixj þ a4x
2
i þ a5x

2
j þ a6x

2
i xj þ a7xix

2
j þ a8x

3
i þ a9x

3
j ; for p ¼ 3;

(4)
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where a1-a9 are the polynomial coefficients to be determined.
Notice that for p ¼ 1, the fourth term is called an interaction term
as xisxj, which represents one-way interaction between the pa-
rameters. If nx ¼ 3, then additional terms and coefficients are
added to account for the additional parameter xk.

Another parameter controlled by the user is the maximum
number of neurons to be used in a hidden layer (nmax). This
parameter is usually assumed to be equal to the number of input
parameters (d). From layer to layer, the best neurons that satisfy the
external criterion are used in the next layer, with maximum
number restricted to nmax. The last option to be highlighted here is
whether or not to include the original input layer in the training
process of every hidden layer. This practice has proved to enhance
the GMDH model for certain problems. In this case, xi inputs from
the input layer are feeding each hidden layer plus the input from
the preceding layer. This practice is expected to increase the
problem dimensionality (e.g. may double it if nx ¼ d), which could
slow the training process due to the large number of combinations
(neurons) to be evaluated. The summary of this discussion on
GMDH networks is shown schematically in Fig. 1. This GMDH
example has the following parameters: d ¼ 4, nx ¼ 2, p ¼ 2,
nmax ¼ 4, and a continuous feedback from the input layer.

2.1.3. External criterion for testing
There are a variety of options for the external criterion to eval-

uate each neuron. Two alternatives are highlighted and used in this
study. The first is based on using additional test set from the
original sample set to test the neurons. It is common in machine
learning terminology to divide the sample set into training set,
which is used to train the neurons in GMDH networks, and test set,
which is used to test the trained model after it is trained and
validated. The test set contains samples independent from the
training set to evaluate the model capability in predicting new
unseen points by the model (to avoid overfitting to the training
data). In this work for GMDH, additional validation set is used as an
Fig. 1. Schematic of multi-layer GMDH networks (green rectangles and white ellipses
represent selected and rejected neurons, respectively). (For interpretation of the ref-
erences to colour in this figure legend, the reader is referred to the Web version of this
article.)
external criterion during network training to prune the weak
neurons. The disadvantage of this approach is that it consumes
more samples from the ensemble, but it could result in better
quality models as they are validated based on real data from the
original model.

The second alternative is based on Akaike's Information Crite-
rion (AIC) which is a common estimator to evaluate the quality of
statistical models (e.g. regression models) [34]. This approach is
preferred for limited number of samples.

2.1.4. GMDH training
After describing the GMDH structure and components, the

training process of the model can be performed by the following
steps:

1. The first (or next) hidden layer is constructed based on all
possible combinations of the input layer (with size d), which can
be determined based on the nx value.

2. If continuous feedback from the input layer is requested, then
additional d inputs and their associated neurons should be
considered for each layer after the first.

3. Least-squares regression can be used to estimate the polynomial
coefficients in Eq. (4) for each neuron in the layer, such that they
fit the training data.

4. Compute the loss function for each neuron, by applying the
external validation criterion, such as mean squared error in the
validation set.

5. The best neurons (i.e. having small error) are selected as can-
didates for the next hidden layer. The number of candidate
neurons is controlled by nmax.

6. Steps 1e5 are repeated for each hidden layer after the first. If the
best neuron in the current layer has smaller error than the
previous layer, stop the training and forward the best neuron
prediction to the output layer (e.g. W3 neuron in Fig. 1).
Otherwise, return to step 1.

2.2. Surrogate models via machine learning

Two other methods based on machine learning techniques are
selected in this study to compare with GMDH. These methods are
described briefly in this section. The first method is based on
Gaussian Processes (GP) modeling [10,11]. GPs are well known
surrogates in machine learning, which can be thought of as
Gaussian distributions over functions instead of points. GPs can be
trained in supervised form using training data and can be used for
prediction with confidence interval [35]. The model output can be
approximated by GP as [36].

YGPð x!Þ¼
Xk
i¼0

aifið x!Þ þ zð x!Þ; (5)

which consists of two main parts: the mean or regression part (also
called trend) and the variance part (also called GP variance). The
regression part consists of the regression coefficients (ai), and the
basis functions (fi) of order k. It is common to use a linear trend
which is given by a0 þ

Pd
i¼1aixi. The second part is represented by
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covariance matrix expressed by

Cov
h
z
�
x!i
�
; z
�
x!j
�i

¼ s2R
�
x!i
; x!j

�
; (6)

where s2 is the process variance and R is called the correlation or
kernel function of the process. The kernel is a fundamental part of
GP, which describes the “similarit” between observations and new
points. There are different options for the kernel function (e.g.
linear, Gaussian, Mat�ern). In this study, Mat�ern-5/2 kernel is used,
which is expressed for any two points (x;x0) as

R ðx; x0; qÞ ¼
 
1þ

ffiffiffi
5

p ���x� x0
���

q
þ 5h2

3q2

!
exp

 � ffiffiffi
5

p ���x� x0
���

q

!
; (7)

where q is the scale parameter. The parameters q and s2 are usually
called hyperparameters of the GP model and they are determined
by methods such as maximum likelihood estimation (MLE) or cross
validation. One of the attractive features of GP models is that they
automatically capture their uncertainty (also known as interpola-
tion or metamodel uncertainty). Therefore, GP model predicts new
points with uncertainty [10,11].

Another common metamodelling approach that has been
widely used is polynomial chaos expansions (PCE) [14,37]. PCE can
be perceived as a way of representing a complex function with
stochastic parameters into simpler polynomial expansions [38].
PCE approximates themodel output using a spectral representation
of polynomial basis functions. The model output can be approxi-
mated by PCE as [39].

YPCE ¼
X
b
!

2B

a
b
!F

b
!ð x!Þ; (8)

where b
!

is an index vector to identify the order of the components
of F

b
!ð x!Þ, which are multivariate orthogonal polynomials (e.g.

Hermite, Legendre), with coefficients expressed by a
b
!. The space B

contains all polynomials in the d input variables of total degree less
than or equal to p (user defined). The multivariate polynomials can
be calculated by tensor product of their univariate polynomials

F
b
!ð x!Þ ¼

Yd

i¼1
f
ðiÞ
bi
ðxiÞ; (9)

where f
ðiÞ
bi
ðxiÞ is a univariate polynomial for the ith input with a

degree of bi. PCE requires evaluating the polynomial coefficients
a

b
!, which can be performed using least-squares or quadrature

methods.
In this study, GMDH is implemented in MATLAB. For other

metamodelling methods (PCE, GP), MATLAB UQLab framework is
used, which provides a flexible implementation of these methods
[40].
Table 1
Parametric uncertainties of the 9 input parameters used in the application of the
BFBT void fraction measurement [41,43].

Parameter Mean Value Uncertainty

Pressure (MPa) 8.71 1%
Temperature (+C) 291.65 ±1.5 +C
Mass Flow Rate (kg/s) 15.16 1%
Power (MW) 0.21e7.35 1.5%
LiqWalHTC 0.616 0.211
SubBoilHTC 1.236 0.089
WallDrag 1.411 0.183
B/S-IntDragBund 1.339 0.116
B/S-IntDragVess 1.234 0.345
2.3. Validation metrics

In machine learning and surrogate modeling, it is important to
evaluate the prediction performance of the constructed surrogate,
especially in prediction of the test samples, which are not used in
training/validation of the surrogate model. Since this work focuses
on continuous variables and regression problems, three proper
metrics are selected. Mean absolute error (MAE) measures the
average over the test set of the absolute differences between pre-
diction and target observation, where all individual differences
have equal weight. MAE is defined as follows
MAE ¼ 1
nt

Xnt

i¼1

��Yi � bY i
��; (10)

where nt is the number of samples in the test set, Yi is the target
output of the ith test sample, which comes from the original model
(e.g. computer code), and bY i is the surrogate prediction of the ith

test sample. Smaller MAE values imply better prediction perfor-
mance. The second metric is the mean squared error (MSE), which
is the average over the test set of the squared differences between
prediction and target observation as follows

MSE ¼ 1
nt

Xnt

i¼1

�
Yi � bY i

�2
; (11)

where small MSE value means the surrogate is good for prediction.
In general, MSE gives relatively high weight to large errors
compared toMAEwhich gives equal weight. BothMAE andMSE are
selected as they are the most common metrics in machine learning
regression. The previous two metrics have units related to the
target output. The third dimensionless metric is called Q2, and it is
similar to the coefficient of determination R2, except that Q2 is
applied over the test set instead of the training set (R2). The Q2
metric is expressed by

Q2 ¼ 1�
Pnt

i¼1

�
Yi � bY i

�2Pnt
i¼1

�
Yi � Y

�2 ; (12)

where Y is the mean of the Y samples. Q2 measures the fraction of
the explained variance in the test samples by the surrogate.
Therefore, Q2 is selected here because it refers to how much of the
variance that we aim to quantify in UQ can be explained by the
surrogate. As Q2 approaches 1.0 (maximum value), the quality of
the surrogate increases. Q2 can be zero or even negative at which
the surrogate fails to capture the target variance (i.e. the surrogate
variance is higher), implying a poor performance by the surrogate
model.

2.4. Selected applications and reactor simulations

The first application (low dimensional) is a reactor thermal-
hydraulics problem based on the widely-used BWR Full-size Fine-
mesh Bundle Test (BFBT) [41]. The lattice is a full-scale 8 � 8 BWR
fuel bundle with a wide range of power, pressure, flow and inlet
temperature experimental conditions. The void fractions are
measured using radiation-based tomography at 4 axial locations.
The void fraction at the axial location z¼ 170.6 cm is selected as the
main output of interest for this application (it is referred to by DEN2
in the BFBT benchmark). The details of experimental conditions and
uncertainties considered in BFBT experiments are listed in Table 1.



Table 2
GMDH optimized training parameters used in the case studies presented in this section.

Parameter Case 1 (sec. 3.1) Case 2 (sec. 3.2)

Number of input parameters (d) 9 65
Number of inputs per neuron (nx) 3 3
Polynomial order per neuron (p) 2 1
Maximum number of neurons per layer (nmax) 9 65
Continuous input layer feedback Yes Yes
External criterion Test Set AIC
Number of training samples 400 400
Number of validation samples 200 e

Number of test samples 300 300
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Based on previous UQ studies on this benchmark [42,43], 9 input
parameters are expected to have large influence on the void frac-
tion uncertainty, which can be classified into two main categories.

� Boundary conditions: system pressure (P), inlet temperature (T),
mass flow rate (MassFlow), and system power (Power).

� Physical model parameters: single phase liquid to wall heat
transfer coefficient (LiqWalHTC), subcooled boiling heat trans-
fer coefficient (SubBoilHTC), wall drag coefficient (WallDrag),
interfacial drag (bubbly/slug rod bundle-Bestion) coefficient (B/
S-IntDragBund), and interfacial drag (bubbly/slug vessel) co-
efficient (B/S-IntDragVess).

Notice that GMDH is used in this work to perform a parametric
UQ, where the distribution as well as the input parameters are
predefined. Other non-parametric UQ approaches can be used (e.g.
Wilk's formula, kernel-based methods) [44]. To summarize this
application, the input-output problem can be written as
Fig. 2. GMDH performance metrics for the l
Y ¼a ¼ FðP; T;…;B=S� IntDragVessÞ; (13)

where a is the void fraction output at z ¼ 170:6 cm and F is the
TRACE safety analysis code used to model the problem [45]. All
input parameters are sampled from a univariate normal distribu-
tion based on the parameters reported in Table 1.

The second application (high dimensional) is a nuclear data
problem, which aims to map the relationship between the uncer-
tainty in the input parameters: the homogenized cross-sections
(HXS), to the output: lattice k∞. To achieve this, a two-step pro-
cess is followed to propagate the uncertainty into the output. First,
the uncertainty in the fundamental microscopic cross-section data
needs to be propagated into the HXS. The Sampler module in the
SCALE code system [46,47] is used for uncertainty propagation. The
56-group cross-section and covariance libraries are used in the
lattice physics code TRITON, which calculates the HXS. The
covariance library contains nuclide-dependent microscopic cross-
ow dimensional Case 1 (void fraction).
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section uncertainties for most of the isotopes relevant to reactor
applications (e.g. U-235, U-238, Pu-239, etc.). The multigroup
cross-sections are then collapsed into an 8-group form.Microscopic
cross-section uncertainties are sampled from amultivariate normal
distribution using the covariance matrices in the 56-group covari-
ance library. In the second step, the HXS are used to calculate the
lattice reactivity (i.e. k∞) which is the output of interest. It is worth
mentioning that this problem was used in a 2-group form in our
previous study, which focused on variance decomposition by
Shapley effect [48]. Since this is a high-dimensional problem, the 8-
group HXS parameters are too long to be listed explicitly, but they
can be classified into three main categories:

� Non-scattering reactions: these include cross-sections of fission
(Sg

f ), absorption (Sg
a), and (n,2n) reactions, homogenized over all

isotopes in the problem. The superscript g refers to the energy
group, where g ¼ 1;2;…;8.

� In-group scattering (i.e. g ¼ g0): the neutron does not change
the energy group after encountering a scattering reaction (e.g.
S4/4
s , S8/8

s ).
� Group-transfer scattering (i.e. gsg0): the neutron changes the
energy group after scattering. For example, S6/7

s is the scat-
tering cross-section from energy group 6 to 7. This also includes
upscattering cross-sections, e.g. S5/4

s is the scattering cross-
section from lower energy group 5 to higher energy group 4.

After removing all HXS with insignificant value (essentially
zero) from all energy groups, the final list contains 65 HXS pa-
rameters from the eight groups. Indeed, most of the negligible HXS
are from the (n,2n) and the two scattering categories. The geometry
selected for this application is a pressurized water reactor (PWR)
lattice geometry based on the Benchmark for Evaluation And
Validation of Reactor Simulations (BEAVRS) [49]. The lattice is a 17�
17 PWR design, with 264 UO2 fuel rods, 24 guide tubes, and one
instrumentation tube. The lattice is designed in a quarter symmetry
in TRITON and depleted to 50 GWD/MTU. Two main responses/
outputs are analyzed in this study: (1) k∞ at the beginning of life
(BOL) without burnup, and (2) k∞ at the end of life (EOL) with
burnup of 50 GWD/MTU. More details about the geometry and
material specifications are given in the benchmark report [49]. To
summarize this application, the input-output problem can be
Fig. 3. GMDH-based normalized Sobol indices for the void fraction variance (based on
104 samples).
written as

Y ¼ k∞ ¼ F
�
S1
f ;S

1
a ;…;S8/8

s

�
; (14)

where k∞ is the lattice infinite multiplication factor output and F is
the TRITON lattice physics code in the SCALE code system [46,47].
3. Results and discussion

Performance analysis of GMDH networks in the context of UQ is
presented in this section. The application based on BFBT void
fraction prediction is presented first, followed by the application of
the 8-group HXS. The authors performed a thorough analysis of the
GMDH parameters to ensure their convergence, but detailed results
are not presented here for conciseness. The summary of the GMDH
parameters used in the two case studies is presented in Table 2.
After presenting the results of GMDH for the two case studies, a
comparison of GMDH with other metamodelling methods is
presented.
3.1. Case 1: two-phase flow in a BWR channel

This application has 9 input parameters, and this number is used
as the maximum number of neurons per layer. Combination of
three inputs in a second order polynomial is used in each neuron. A
total of 900 samples is used for this problem, and these samples are
divided into 400 training samples, 200 validation samples, and 300
test samples. The original input layer is used to feed every hidden
layer in this problem. GMDH results are presented in Fig. 2 for the
300 test samples. It is clear that GMDH network is able to capture
the void fraction in the test samples, as can be told from the very
good agreement of Y and YGMDH in Fig. 2. The validation metrics of
GMDH based on the test set demonstrate very good performance as
Q2 reports that GMDH captures 99% of the variance in the test set.
This is also true based on the small values of MAE and MSE for this
test case. The network converged after 1 hidden layer. In general,
these results show that GMDH can performwell in low dimensional
problems.

After validating GMDH performance, it can be used to perform
variance decomposition using Sobol indices, which is a typical and
expensive UQ task [50]. The first-order index (Si) measures the
main effect of varying the parameter xi alone on the output vari-
ance, and it is defined as

Si ¼
Var½E½yjxi��

Var½y� ; (15)

where Var½E½yjxi�� represents the reduction in Var½y� when xi is
fixed. The total index (Ti) measures the total effect on the output
variance from xi alone as well as its interactions with other pa-
rameters, and it is defined as

Ti ¼1� Var½E½yj x!�i��
Var½y� ; (16)

which expresses the remaining variance of y, when all input pa-
rameters other than xi (i.e. x!�i) are fixed. The condition Ti � Si
must be satisfied, where the equality holds when the parameter i
has no interactions with other parameters. These Sobol indices are
estimated in this paper by Monte Carlo methods used before in
Refs. [48,51]. Since estimating Sobol indices requires executing the
original model, the accurate and fast GMDH network is used
instead of TRACE, and the results are plotted in Fig. 3 using 104

Monte Carlo samples.
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First, the void fraction variance is dominated by the inlet tem-
perature (subcooling) as T contributes to more than 90% of the total
variance. The pressure and power conditions have 5% and 1%
variance contribution, respectively, and the remaining parameters
contribute to less than 1% of the output variance. Also, the first-
order and total indices have close numerical estimates, implying
small effect of parameter interactions on the output variance. From
physics point of view, inlet temperature of the fluid is the most
sensitive parameter, as a dense liquid needs additional time to boil
to form gas void than a light fluid entered with high inlet tem-
perature. In addition, the void fraction measurement is at
z ¼ 170.6 cm, which is close to the inlet, and hence sensitive to the
inlet temperature. In general, we can observe that the uncertainty
in the boundary conditions (e.g. T, P, etc.) is more influential on the
void fraction uncertainty than the physical model parameters,
based on the parametric uncertainties assigned in Table 1.

3.2. Case 2: 8-group homogenized cross-sections

This problem has 65 input parameters, and this number is used
as the maximum number of neurons per layer. Combination of
three inputs in a first order polynomial with one-way interaction is
used in each neuron. A total of 700 samples is used for this problem,
and these samples are divided into 400 training samples and 300
test samples, where AIC is used as the external criterion. The
original input layer is also used to feed every hidden layer in the
network. GMDH results are presented for this case study in Fig. 4
for the 300 test samples. The results presented in Fig. 4 are for
lattice k∞ at EOL with burnup of 50 GWD/MTU. Notice that GMDH
also demonstrated similar performance at BOL, but results are not
Fig. 4. GMDH performance metrics for the
shown here for brevity. GMDH network maintains its performance,
even though the dimensionality increases to 65. MSE and MAE are
decreased further for Case 2, and Q2 remains close to 99%. The good
agreement in EOL's k∞ can be clearly seen in Y and YGMDH close
predictions. At BOL, the network converged after 9 hidden layers,
while at EOL the network needed 8 hidden layers to converge.

After validating GMDH performance for the high dimensional
case, it can be used to perform uncertainty propagation task with
large number of samples. Monte Carlo uncertainty propagation
using GMDH networks is performed using 104 samples, generated
from the covariance matrix of the HXS parameters. The uncertainty
results of k∞ are plotted in Fig. 5 for BOL and EOL cases, which
correspond to 1-s around themean. The uncertainty in lattice k∞ at
BOL is about 726 pcm, which is equivalent to 0.58% of the mean. At
EOL, the lattice k∞ decreases due to fuel depletion across the cycle.
The k∞ uncertainty (1-s) at EOL is 497 pcm, which corresponds to
0.61% of the mean.

3.3. Comparison between the methods

Finally, a comparison between GMDH performance with other
machine learning and metamodelling methods is conducted. The
validation metrics for all methods are listed in Table 3. For the GP
model in Case 1: Mat�ern-5/2 kernel, MLE estimation for the
hyperparameters, and a quadratic trend (GP mean) are used. In
Case 2, similar settings are used except that a linear trend is used, as
the quadratic trend gives poor results. For PCE, Hermite poly-
nomials and a truncation polynomial degree of 2 are used for both
cases as they yielded best results. The training and test samples
used in GMDH and the other two methods are similar.
high dimensional Case 2 (k∞ at EOL).



Table 3
Comparison of metrics between GMDH and other metamodelling methods for the
two case studies.

Method Case 1 Case 2

MAE MSE Q2 MAE MSE Q2

GMDH 4.112E-03 2.887E-05 0.9901 3.633E-04 2.082E-07 0.9915
GP 5.385E-04 4.281E-07 0.9999 3.169E-04 1.694E-07 0.9931
PCE 1.719E-03 6.042E-06 0.9979 3.183E-03 1.597E-05 0.3460

Fig. 5. GMDH-based uncertainty propagation of lattice k∞ at BOL and EOL using 104 samples.
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Based on the comparison in Table 3, we can find that for the low
dimensional case, GP and PCE have a slightly better performance
than GMDH in terms of MAE and MSE. However, all three methods
have Q2 value close to 1.0. In general, PCE is expected to perform
well in low-dimensional problems. However, moving to the high
dimensional Case 2, PCE shows poor Q2 value relative to the other
two methods, where GMDH and GP demonstrate competitive
performance. Notice that the small values of MAE and MSE for PCE
in Case 2 can be misleading. For example, MAE for PCE in Case 2 is
3:18� 10�3, which is equivalent to 318 pcm. This uncertainty
resulted from PCE model mis-prediction is considered significant
for k∞, especially that the total uncertainty we aim to capture is 500
pcm (also notice the difference in the sample sizes between Fig. 5
and the test set). In this situation, Q2 is considered a better
metric as it indicates that only 35% of the sample variance in the
test set is captured by PCE. Even though GP shows a slightly better
performance than GMDH in case 2, it is still important to notice the
advantages of GMDH, which include handling dimensionality,
preserving simple mathematical foundation and training, and
providing excellent accuracy. On the other hand, GP models have
more complicated mathematical foundation and they are more
difficult to train, due to the need to optimize the model
hyperparameters.

Finally, we can conclude that GMDH provides competitive and
reliable performance as a surrogatemodel, when it is applied to low
and high dimensional problems. The reader should notice that we
applied one form of GMDH networks (the most common) in this
study, which implies that other GMDH algorithms can provide
different results (either better or worse).
4. Conclusions

Multi-layer GMDH networks are used in this study to perform
UQ of reactor simulations. GMDH networks are considered one of
the earliest deep learning methods. GMDH is used as a surrogate/
metamodel in this study to replace high fidelity computer models
with a metamodel to facilitate UQ tasks. Application of GMDH to a
low dimensional problem of two-phase flow in a BWR channel is
used, while application of nuclear data using 8-group homogenized
cross-sections is used as a high-dimensional case. In both cases,
GMDH networks show very good performance with Q2 value rea-
ches as large as 0.99 (maximum is 1.0). Comparison with other
surrogate methods including GP and PCE demonstrates that GMDH
has competitive performance with them at the low dimensional
problem, and reliable performance at the high dimensional prob-
lem. In future work, the concept of deep GPs will be applied to UQ
of nuclear reactor simulations. Deep GPs have an attractive features
of handling high dimensional problems plus preserving the GP
feature of prediction with confidence bounds. Additional applica-
tions of GMDH networks to multiphysics simulations as well as
fault detection will be performed. Comparison of GMDH perfor-
mance to other networks such as neural networks can also be done.

Appendix A. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.net.2019.07.023.
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