Browse > Article
http://dx.doi.org/10.1016/j.net.2019.07.023

Analyzing nuclear reactor simulation data and uncertainty with the group method of data handling  

Radaideh, Majdi I. (Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana Champaign)
Kozlowski, Tomasz (Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana Champaign)
Publication Information
Nuclear Engineering and Technology / v.52, no.2, 2020 , pp. 287-295 More about this Journal
Abstract
Group method of data handling (GMDH) is considered one of the earliest deep learning methods. Deep learning gained additional interest in today's applications due to its capability to handle complex and high dimensional problems. In this study, multi-layer GMDH networks are used to perform uncertainty quantification (UQ) and sensitivity analysis (SA) of nuclear reactor simulations. GMDH is utilized as a surrogate/metamodel to replace high fidelity computer models with cheap-to-evaluate surrogate models, which facilitate UQ and SA tasks (e.g. variance decomposition, uncertainty propagation, etc.). GMDH performance is validated through two UQ applications in reactor simulations: (1) low dimensional input space (two-phase flow in a reactor channel), and (2) high dimensional space (8-group homogenized cross-sections). In both applications, GMDH networks show very good performance with small mean absolute and squared errors as well as high accuracy in capturing the target variance. GMDH is utilized afterward to perform UQ tasks such as variance decomposition through Sobol indices, and GMDH-based uncertainty propagation with large number of samples. GMDH performance is also compared to other surrogates including Gaussian processes and polynomial chaos expansions. The comparison shows that GMDH has competitive performance with the other methods for the low dimensional problem, and reliable performance for the high dimensional problem.
Keywords
Uncertainty quantification; GMDH; Surrogate modeling; Deep learning; Reactor simulations;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 B. Lu, B. Upadhyaya, Monitoring and fault diagnosis of the steam generator system of a nuclear power plant using data-driven modeling and residual space analysis, Ann. Nucl. Energy 32 (9) (2005) 897-912.   DOI
2 H. Kim, M.G. Na, G. Heo, Application of monitoring, diagnosis, and prognosis in thermal performance analysis for nuclear power plants, Nucl. Eng. Technol. 46 (6) (2014) 737-752.   DOI
3 H.R. Madala, A.G. Ivakhnenko, Inductive Learning Algorithms for Complex Systems Modeling, vol. 368, cRc press, Boca Raton, 1994.
4 H. Akaike, A new look at the statistical model identification, IEEE Trans. Autom. Control 19 (6) (1974) 716-723.   DOI
5 C.E. Rasmussen, Gaussian processes in machine learning, in: Advanced Lectures on Machine Learning, Springer, 2004, pp. 63-71.
6 C. Lataniotis, S. Marelli, B. Sudret, UQlab user manualekriging (Gaussian process modelling), Rep. UQLab-V0 (2015) 9-105.
7 G. Blatman, B. Sudret, Adaptive sparse polynomial chaos expansion based on least angle regression, J. Comput. Phys. 230 (6) (2011) 2345-2367.   DOI
8 R.G. Ghanem, P.D. Spanos, Stochastic finite element method: response statistics, in: Stochastic Finite Elements: A Spectral Approach, Springer, 1991, pp. 101-119.
9 S. Marelli, B. Sudret, UQlab User ManualePolynomial Chaos Expansions, Chair of Risk, Safety & Uncertainty Quantification, ETH Zurich, 0.9-104 edition.
10 S. Marelli, B. Sudret, UQlab: a framework for uncertainty quantification in Matlab, in: Vulnerability, Uncertainty, and Risk: Quantification, and Management, Mitigation, 2014, pp. 2554-2563.
11 B. Neykov, F. Aydogan, L. Hochreiter, K. Ivanov, H. Utsuno, F. Kasahara, E. Sartori, M. Martin, NUPEC BWR full-size fine-mesh bundle test (BFBT) benchmark, in: Tech. rep., Organisation for Economic Co-operation and Development(OECD), Nuclear Energy Agency, 2006.
12 M.I. Radaideh, K. Borowiec, T. Kozlowski, Integrated framework for model assessment and advanced uncertainty quantification of nuclear computer codes under bayesian statistics, Reliab. Eng. Syst. Saf. 189 (2019) 357-377.   DOI
13 Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (7553) (2015) 436.   DOI
14 L. Deng, D. Yu, et al., Deep learning: methods and applications, Foundations and Trends(R) in Signal Processing 7 (3-4) (2014) 197-387.
15 T. Poggio, H. Mhaskar, L. Rosasco, B. Miranda, Q. Liao, Why and when can deep-but not shallow-networks avoid the curse of dimensionality: a review, Int. J. Autom. Comput. 14 (5) (2017) 503-519.
16 S.M. Erfani, S. Rajasegarar, S. Karunasekera, C. Leckie, High-dimensional and large-scale anomaly detection using a linear one-class SVM with deep learning, Pattern Recognit. 58 (2016) 121-134.   DOI
17 E. Keogh, A. Mueen, Curse of dimensionality, in: Encyclopedia of Machine Learning, Springer, 2011, pp. 257-258.
18 U.S.NRC, TRACE v5.840 Theory Manual: Fields Equations, Solution Methods, and Physical Models, US Nuclear Regulatory Commission, Washington, D.C., United States.
19 X. Wu, T. Kozlowski, H. Meidani, K. Shirvan, Inverse uncertainty quantification using the modular Bayesian approach based on Gaussian process, Part 2: application to trace, Nucl. Eng. Des. 335 (2018) 417-431.   DOI
20 N.V. Queipo, R.T. Haftka, W. Shyy, T. Goel, R. Vaidyanathan, P.K. Tucker, Surrogate- based analysis and optimization, Prog. Aerosp. Sci. 41 (1) (2005) 1-28.   DOI
21 S.M. Bowman, SCALE 6: comprehensive nuclear safety analysis code system, Nucl. Technol. 174 (2) (2011) 126-148.
22 B.T. Rearden, M.A. Jessee, SCALE Code System, Tech. rep., Oak Ridge National Lab.(ORNL), 2018. Oak Ridge, TN (United States).
23 M.I. Radaideh, S. Surani, D. O'Grady, T. Kozlowski, Shapley effect application for variance-based sensitivity analysis of the few-group cross-sections, Ann. Nucl. Energy 129 (2019) 264-279.   DOI
24 N. Horelik, B. Herman, B. Forget, K. Smith, Benchmark for evaluation and validation of reactor simulations (BEAVRS), v1. 0.1, in: Proc. Int. Conf. Mathematics and Computational Methods Applied to Nuc. Sci. & Eng, 2013. Sun Valley, Idaho, United States, May 5-9.
25 K.K. Vu, C. D'Ambrosio, Y. Hamadi, L. Liberti, Surrogate-based methods for black-box optimization, Int. Trans. Oper. Res. 24 (3) (2017) 393-424.   DOI
26 R.C. Smith, Uncertainty Quantification: Theory, Implementation, and Applications, vol. 12, Siam, 2013.
27 A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli, M. Saisana, S. Tarantola, Global Sensitivity Analysis: the Primer, John Wiley & Sons, 2008.
28 A.I. Forrester, A.J. Keane, Recent advances in surrogate-based optimization, Prog. Aerosp. Sci. 45 (1-3) (2009) 50-79.   DOI
29 J.D. Martin, T.W. Simpson, Use of kriging models to approximate deterministic computer models, AIAA J. 43 (4) (2005) 853-863.   DOI
30 G. Glen, K. Isaacs, Estimating sobol sensitivity indices using correlations, Environ. Model. Softw 37 (2012) 157-166.   DOI
31 B. Sudret, Global sensitivity analysis using polynomial chaos expansions, Reliab. Eng. Syst. Saf. 93 (7) (2008) 964-979.   DOI
32 A. Marrel, B. Iooss, F. Van Dorpe, E. Volkova, An efficient methodology for modeling complex computer codes with Gaussian processes, Comput. Stat. Data Anal. 52 (10) (2008) 4731-4744.   DOI
33 M.D. Buhmann, Radial Basis Functions: Theory and Implementations, vol. 12, Cambridge university press, 2003.
34 S. Chan, A.H. Elsheikh, A machine learning approach for efficient uncertainty quantification using multiscale methods, J. Comput. Phys. 354 (2018) 493-511.   DOI
35 R. Tripathy, I. Bilionis, Deep UQ: learning deep neural network surrogate models for high dimensional uncertainty quantification, J. Comput. Phys. 375 (2018) 565-588.   DOI
36 J. Schmidhuber, Deep learning in neural networks: an overview, Neural Netw. 61 (2015) 85-117.   DOI
37 I.M. Sobol, Sensitivity estimates for nonlinear mathematical models, Math. Model. Civ. Eng. 1 (4) (1993) 407-414.
38 Y. Zhu, N. Zabaras, Bayesian deep convolutional encoderedecoder networks for surrogate modeling and uncertainty quantification, J. Comput. Phys. 366 (2018) 415-447.   DOI
39 A.G. Ivakhnenko, The group method of data of handling; a rival of the method of stochastic approximation, Soviet Automatic Control 13 (1968) 43-55.
40 A.G. Ivakhnenko, Polynomial theory of complex systems, IEEE Trans. Sys. Man Cybern. (4) (1971) 364-378.   DOI
41 S.J. Farlow, The GMDH algorithm of ivakhnenko, Am. Statistician 35 (4) (1981) 210-215.   DOI
42 A. Ivakhnenko, G. Ivakhnenko, The review of problems solvable by algorithms of the group method of data handling (GMDH), Pattern Recognition and Image Analysis C/C of Raspoznavaniye Obrazov I, Analiz Izobrazhenii 5 (1995) 527-535.
43 X. Tian, V. Becerra, N. Bausch, T. Santhosh, G. Vinod, A study on the robustness of neural network models for predicting the break size in LOCA, Prog. Nucl. Energy 109 (2018) 12-28.   DOI
44 A. Ivakhnenko, Heuristic self-organization in problems of engineering cybernetics, Automatica 6 (2) (1970) 207-219.   DOI
45 X. Jia, Y. Di, J. Feng, Q. Yang, H. Dai, J. Lee, Adaptive virtual metrology for semiconductor chemical mechanical planarization process using GMDH-type polynomial neural networks, J. Process Control 62 (2018) 44-54.   DOI
46 T. Kondo, J. Ueno, Multi-layered GMDH-type neural network self-selecting optimum neural network architecture and its application to 3-dimensional medical image recognition of blood vessels, Int. J. Innov. Comput. Inf. Control 4 (1) (2008) 175-187.
47 M. Witczak, J. Korbicz, M. Mrugalski, R.J. Patton, A GMDH neural networkbased approach to robust fault diagnosis: application to the damadics benchmark problem, Contr. Eng. Pract. 14 (6) (2006) 671-683.   DOI
48 S. Dolati, N. Amanifard, H.M. Deylami, Numerical study and GMDH-type neural networks modeling of plasma actuator effects on the film cooling over a flat plate, Appl. Therm. Eng. 123 (2017) 734-745.   DOI
49 T. Cong, G. Su, S. Qiu, W. Tian, Applications of ANNs in flow and heat transfer problems in nuclear engineering: a review work, Prog. Nucl. Energy 62 (2013) 54-71.   DOI
50 M.-G. Park, H.-C. Shin, Reactor power shape synthesis using group method of data handling, Ann. Nucl. Energy 72 (2014) 467-470.   DOI
51 F. Khoshahval, S. Yum, H.C. Shin, J. Choe, P. Zhang, D. Lee, Smart sensing of the axial power and offset in NPPs using GMDH method, Ann. Nucl. Energy 121 (2018) 77-88.   DOI